
Dynamic Modeling of Linear Object Deformation
Considering Contact with Obstacles

Hidefumi Wakamatsu, Tatsuya Yamasaki,
Akira Tsumaya, and Eiji Arai

Dept. Materials and Manufacturing Science,
Osaka Univ.

Suita, Osaka 565-0871, Japan
Email: wakamatu@mapse.eng.osaka-u.ac.jp

Shinichi Hirai
Dept. Robotics, Ritsumeikan Univ.
Kusatsu, Shiga 525-8577, Japan
Email: hirai@se.ritsumei.ac.jp

Abstract—This paper describes the dynamic modeling of
linear object deformation considering geometrical constraints and
contact with obstacles. Deformable linear objects such as cables
and strings are widely used in our daily life, some industries,
and medical operations. Modeling, control, and manipulation of
deformable linear objects are keys to many applications. We have
formulated the static deformation of a linear object using the dif-
ferential geometry coordinates. In this paper, we apply differential
geometry coordinates to the dynamic modeling of linear objects.
First, we formulate dynamic 2D deformation of an inextensible
linear object based on a differential geometry coordinate system.
Second, we consider dynamic deformation of the linear object
when forces/moments and geometrical constraints are imposed
on the object. Third, we model contact of a linear object with a
circular obstacle. It can be applied to self-contact of the linear
object. Finally, we show simulation results using the proposed
modeling technique.
Keywords—linear object, deformation, dynamics, modeling,

contact

I. INTRODUCTION

Deformable linear objects such as cables and strings are
widely used in our daily life, some industries, and medical
operations. Modeling, control, and manipulation of deformable
linear objects are keys to many applications: robotic systems
capable of manipulating linear objects, automatic handling of
electric cables and wires, and simulation of medical surgery
with threads. For example, Fig.1 shows an example of twisted
fancy yarns in apparel industries. Such yarn is produced by
twisting more than three threads together changing feed speed
of each thread intermittently. As the shape of the fancy yarn
is dependent on the feed speed, simulation of twisting process
is required for design of the fancy yarn. In such simulation,
dynamic effect of a thread can not be negligible. Furthermore,
contact between a thread and a twisting machine and/or another
thread also must be considered.
Deformed shape of threads in a fabric has been described

geometrically [1]. In computer graphics, the particle-based
approach has been applied to simulate the motion of hairs.
Flexure and extension of hairs have been described in [2],
while flexure and torsion of hairs have been described in
[3], implying that flexure, torsion, and extension of a lin-
ear object can be described using particle-based approach.

Fig. 1. Example of twisted fancy yarns

Deformation of a linear object can be modeled using beam
elements in FEM. Spline-based modeling has been applied
to the realtime simulation of soft tissues as well as sutures
in surgery [4]. Linear objects have been approximated using
beams in the engineering community; models exist to describe
small deflection of beams[5], and also large deformation using
nonlinear beam finite elements[6]. Fast algorithms have been
introduced to describe linear object deformation using the
Cosserat formulation [7]. In robotics, to eliminate vibration of
a linear object during manipulation, FEM has been applied to
modeling of its dynamics[8]. Dynamic modeling of a flexible
object with an arbitrary shape has been proposed to manipulate
it without vibration[9]. We have proposed the differential
geometry coordinates to describe the 2D/3D deformation of
a linear object with the minimum number of parameters[10].
We have established static formulation of a deformable linear
object using the differential geometry coordinates and we have
also applied them to the dynamic modeling of the object[11].
In this paper, we propose the dynamic modeling of linear

object deformation considering geometrical constraints and
contact with obstacles. First, we formulate dynamic 2D defor-
mation of an inextensible linear object based on a differential
geometry coordinate system. Second, we consider dynamic
deformation of the linear object when forces/moments and
geometrical constraints are imposed on the object. Third, we
model contact of a linear object with a circular obstacle. It can
be applied to self-contact of the linear object. Finally, we show
simulation results using the proposed modeling technique.

II. DYNAMIC MODELING OF LINEAR OBJECT
DEFORMATION

In this section, we formulate the 2D deformation of an
inextensible linear object. Assume that a linear object of length
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Fig. 2. Dynamic 2D deformation of inextensible linear object

L bends in frame O−xy, as illustrated in Fig.2. One end of
the object is fixed to but can rotate around the origin. The
other end is free to move. Let s be the distance from the
fixed end along the linear object. Let P(s) be a point on the
object specified by distance s. Let θ(s, t) be the angle from
the horizon at point P(s) and time t. Position of point P(s) at
time t is then described by

x(s, t) =
[

x(s, t)
y(s, t)

]
=

∫ s

0

[
cos θ(u, t)
sin θ(u, t)

]
du. (1)

Differentiating the above equation with respect to time t yields
the velocity vector at point P(s) given by

ẋ =
[

ẋ
ẏ

]
=

∫ s

0

[ − sin θ
cos θ

]
θ̇ du. (2)

Lagrangian formulation requires the kinetic energy of the
object. Kinetic energy T can be described as follows:

T =
∫ L

0

1
2
ρ(ẋ2 + ẏ2) ds (3)

where ρ denotes the line density at point P(s), which may
depend on s.
Let us divide region [0, L] into n small regions with a

constant interval h = L/n. Let P0 through Pn be nodal
points on the region, of which coordinates are denoted as
s0 through sn. Applying piecewise linear approximation to
function θ(s, t), the function can be described by

θ(s, t) = θi(t)Ni,j(s) + θj(t)Nj,i(s) (4)

in a divided region [si, sj ], where θi(t) = θ(si, t) and θj(t) =
θ(sj , t). Shape function Ni,j(s) takes 1 at si and 0 at sj while
Nj,i(s) takes 0 at si and 1 at sj . Let Ai be a set of nodal points
adjacent to nodal point Pi:

Ai = { j | nodal point Pj is adjacent to nodal point Pi }.
Then, the shape of the object is represented as links of circular
arcs. This representation allows to approximate the object
shape with less nodal points than a representation using links
of straight segments.
Finite element approximation is applied to the kinetic

energy T of a deformable linear object. First, let us introduce
the following integrals:

Si,j(s; θ0, · · · , θn) =
∫ s

0

{sin θ(u, t)}Ni,j(u) du,

Ci,j(s; θ0, · · · , θn) =
∫ s

0

{cos θ(u, t)}Ni,j(u) du.

These integrals Si,j and Ci,j depend on θ0 through θn. Then,
kinetic energy T is described by a quadratic form with respect
to θ̇0 through θ̇n given by

T =
1
2

∑
i

∑
k

mi,kθ̇iθ̇k (5)

where

mi,k =
∫ L

0

∑
j∈Ai

∑
l∈Ak

ρ(Si,jSk,l + Ci,jCk,l) ds. (6)

Let M be a matrix of which the (i, k)-th element is given by
mi,k. Matrix M is referred to as the inertial matrix, which is
symmetric and positive-definite.
Partial derivative of inertia matrix component m i,k with

respect to a generalized coordinate θr is given by

∂mi,k

∂θr
=

∫ L

0

∑
j∈Ai

∑
l∈Ak

ρ

(
∂Si,j

∂θr
Sk,l + Si,j

∂Sk,l

∂θr
+

∂Ci,j

∂θr
Ck,l + Ci,j

∂Ck,l

∂θr

)
ds (7)

where

∂Si,j

∂θr
=




∫ s

0

cos θ · N2
i,j du r = i∫ s

0

cos θ · Ni,j · Nj,i du r = j

0 otherwise

,

∂Ci,j

∂θr
=




∫ s

0

− sin θ · N2
i,j du r = i∫ s

0

− sin θ · Ni,j · Nj,i du r = j

0 otherwise

.

Lagrange equation of motion with respect to θ i is formu-
lated as follows:

∂L

∂θi
− d

ds

∂L

∂θ̇i

= 0. (8)

Contribution of kinetic energy T to the above Lagrange
equation of motion is described by∑

k

Xi,kθ̇k −
∑

k

mi,kθ̈k +
∑

j

Yi,j θ̇j (9)

where

Xi,k =
1
2




∑
j

(
∂mk,j

∂θi
− ∂mi,j

∂θk

)
θ̇j


 , (10)

Yi,j =
1
2

{
−

∑
k

∂mi,j

∂θk
θ̇k

}
. (11)

Let θ be a vector consisting of θ0 through θn. Contribution
of kinetic energy T to a set of Lagrange equations of motion
with respect to θ0 through θn is then summarized in a vector
form as follows:

X θ̇ − M θ̈ + Y θ̇.
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Assume that the potential energy of the object U consists of
flexural potential energy Uf and gravitational potential energy
Ug, namely,

U = Uf + Ug. (12)

Assuming that the bending moment at point P(s) on the object
is proportional to the curvature at that point, the flexural
potential energy is formulated as

Uf =
∫ L

0

1
2
Rf

(
dθ

ds

)2

ds (13)

where Rf denotes the flexural rigidity at point P(s). Assum-
ing that rigidity Rf is constant, flexural potential energy is
approximated as follows:

Uf =
∑

[si,sj ]

1
2

[
θi θj

] Rf

h

[
1 −1
−1 1

] [
θi

θj

]
. (14)

Namely, flexural potential energy is described by a quadratic
form as follows:

Uf =
1
2
θTKθ (15)

where K denotes the stiffness matrix of flexural deformation.
Consequently, contribution of flexural potential energy to a
set of Lagrange equations of motion is given by −Kθ. The
gravitational potential energy is given by

Ug =
∫ L

0

ρg y(s, t) ds (16)

where g is the acceleration of gravity. Let −G(θ) be the con-
tribution of gravitational potential energy to a set of Lagrange
equations of motion. The i-th component of vectorG coincides
with the partial derivative of Ug with respect to θi:

Gi =
∂Ug

∂θi
=

∫ L

0

ρg
∂y

∂θi
ds (17)

where

∂y

∂θi
=

∫ s

0

cos θ(u, t)




∑
j∈Ai

Ni,j(u)


 du.

Applying any numerical integration, we can compute the con-
tribution of gravitational potential energy to a set of Lagrange
equations of motion. As a result, contribution of potential
energy U to a set of Lagrange equations of motion with respect
to θ0 through θn is summarized in a vector form as follows:

−Kθ − G(θ).

A set of Lagrange equations of motion with respect to θ̇0

through θ̇n is then described by

X θ̇ − M θ̈ + Y θ̇ − Kθ − G(θ) = 0. (18)

Let ω be a vector consisting of angular velocities θ0 through
θn. The above set of equations can be rewritten as follows:

θ̇ = ω,

M ω̇ = Xω + Y ω − Kθ − G(θ). (19)

Note that matrices M , X , and Y depend on vector θ. Individ-
ual elements of matrix M can be computed by eq.(6). Individ-
ual elements of matrices X and Y can be calculated through
partial derivatives given in eq.(7). We can compute these partial
derivatives using any numerical integration method.
In this section, we have formulated the 2D dynamic defor-

mation of an inextensible linear object, which is described by
one function θ(s, t). This formulation can be extended to the
2D dynamic deformation of an extensible linear object, which
is described by two independent functions.

III. FORMULATION OF CONSTRAINTS

In this section, we formulate dynamic deformation of a
linear object when forces/moments and geometrical constraints
are imposed on it.
First, let us assume that force f is imposed on a linear

object at point Pa specified by distance sa. Then, work W
done by force f is given by

W = f · x(sa). (20)

When work is considered, Lagrangian is described by

L = T − U + W. (21)

Let F (θ) be the contribution of work to a set of Lagrange
equations of motion. The i-th component of vector F coincides
with the partial derivative of W with respect to θi:

Fi =
∂W

∂θi
= f ·

∫ sa

0

[ − sin θ
cos θ

]
·



∑
j∈Ai

Ni,j(u)


 du. (22)

Note that Fi is equal to zero when i > j where (j − 1)h <
sa < jh. Then, Lagrange equations of motion are as follows:

θ̇ = ω,

M ω̇ = Xω + Y ω − Kθ − G(θ) + F (θ). (23)

We can also derive Lagrange equations of motion when a
moment is imposed on the object.
Next, let us assume that geometrical constraints are imposed

on a linear object. Let Rj(θ) = 0 be geometrical constraints
with respect to θ. When constraints exist, Lagrangian is
described by

L = T − U +
∑

j

λjRj (24)

where λj are Lagrange multipliers. In this paper, we introduce
Constraint Stabilization Method[12] to derive dynamic defor-
mation of a linear object satisfying geometrical constraints.
Let us introduce the following equations:

R̈j + 2µjṘj + µ2
jRj = 0 (25)

where µj are predetermined values. These differential equa-
tions correspond to those of a critical damping with respect to
Rj . This implies that Rj converges to zero quickly, namely,
constraint Rj = 0 is satisfied during the computation. Adding
these differential equations to a set of equations of motion,
θ and ω satisfying these constraints can be computed. For
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example, let us assume that the angle at the left endpoint of a
linear object is fixed to horizontal angle, i.e.,

θ0 = 0. (26)

An additional differential equation is then described by

ω̇0 = −2µω0 − µ2θ0. (27)

Let α = [ 1, 0, · · · , 0 ]T be a (n+1)-dimensional vector. Then,
we have the following equations:[

M α
αT 0

] [
ω̇
λ

]
=

[
Xω + Y ω − Kθ − G(θ)

−2µω0 − µ2θ0

]
.

(28)
Solving the above equations, dynamic deformation of a linear
object rotation around the left endpoint of which is fixed is
derived. Thus, we can also simulate dynamic deformation of a
linear object with forces/moments and geometrical constraints.

IV. MODELING OF CONTACT

In this section, we explain modeling of contact between a
linear object and a circular obstacle. Let xo = [xo, yo]T be
coordinates of the center of a circular obstacle with radius r.
Let Pc be the closest point on a linear object to the center of
the obstacle specified by distance sc. Let us define the distance
from the center of the obstacle to Pc as the following vector
d:

d = x(sc) − xo. (29)

Let u be the unit vector of the distance d, namely, u =
d/|d|. We represent interaction between a linear object and
an obstacle as Voigt model of viscoelastic deformation. Let us
assume that the following repulsive force f c of which direction
corresponds to the normal to the obstacle surface at Pc is
imposed on the object when Pc interferes with the obstacle,
i.e., |d| − r < 0:

fc = kc(ru − d) − bc(ḋ · u)u (30)

where kc and bc are spring and damping constants of Voigt
model, respectively. Note that kc and bc must be determined
experimentally. Then, work W done by repulsive force f c is
represented as follows:

W = fc · xc (31)

Substituting eq.(31) into eq.(21), we can simulate dynamic
deformation of a linear object contacting with a circular
obstacle.
We can also model self-contact of a linear object applying

the above technique. Let us assume that a part of a linear object
represented as s ∈ [ss1, se1] and its another part represented as
s ∈ [ss2, se2] interfere with each other. The former is denoted
as part 1 and the latter as part 2. Let Pc1(sc1) be the midpoint
of part 1, namely, sc1 = (ss1 + se1)/2 and Pc2(sc2) be the
midpoint of part 2, namely, sc2 = (ss2 + se2)/2. Coordinates
of midpoints Pc1 and Pc2 are

x1 =
[

x(sc1, t)
y(sc1, t)

]
, x2 =

[
x(sc2, t)
y(sc2, t)

]
, (32)

respectively. Let d be the following vector:

d = x2 − x1. (33)

We represent interaction between two parts of the object as
Voigt model of viscoelastic deformation. Let us assume that
the following force f c1 is imposed on part 1:

fc1 = kcd − bc(ḋ · u)u (34)

where u = d/|d|. At the same time, force f c2 = −fc1 is
imposed on part 2. Consequently, the following work should
be added to Lagrangian:

W = fc1 · x1 + fc2 · x2. (35)

Thus, we can simulate dynamic deformation of a linear object
contacting with circular obstacles and itself.

V. SIMULATION RESULTS

This section describes three simulation results of dynamic
2D deformation of an inextensible linear object.
Figure 3 shows a sequence of deformed shapes of a linear

object of length 1.00, flexural rigidity 10.00, and line density
10.00 under gravity. The length is divided into 10 small
intervals; implying that the deformation can be approximated
by 11 nodal points. The distance between the two endpoints
of the object is reduced to 0.60 along the horizontal line at
its initial shape, as illustrated in Fig.3-(a). The left endpoint
of the object is fixed to the coordinate origin. Angles of both
endpoint are fixed to horizontal angle, i.e.,

θ(0, t) = 0, θ(L, t) = 0, ∀t ∈ [0,∞]. (36)

The right endpoint is available to move along x-axis, i.e.,

y(L, t) = 0, ∀t ∈ [0,∞]. (37)

The right endpoint is translated at velocity -3.00 from time
0.00 to 0.10, i.e.,

x(L, t) =
{

0.60 − 3.00t, 0 ≤ t ≤ 0.10,
0.30, 0.10 < t.

(38)

That is, four geometrical constraints described by eqs.(36)
through (38) are imposed on the object. Runge-Kutta Fehlberg
method integrates a set of motion equations of the object. As
shown in Fig.3-(b) through (d), motion of the upper part of
the object is delayed due to inertia at time 0.03 through 0.09.
At time 0.12, the upper part catches up to the lower part as
described in Fig.3-(e) and it overruns at time 0.15 through 0.18
as shown in Fig.3-(f) through (g) although the motion of the
right endpoint has been stopped. Finally, the object starts to
swing as illustrated in Fig.3-(h) through (l). This simulation
result given in the figures shows dynamic deformation of a
linear object well qualitatively.
Figure 4 shows another sequence of deformed shapes of a

linear object of length 1.00, flexural rigidity 0.10, and line
density 1.00 with 11 nodal points under gravity. The left
endpoint is fixed to the coordinate origin but is free to rotate.
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Fig. 3. Simulation of dynamic deformation of linear object with geometrical constraints

At time 0.00, the object is in a horizontal position as shown
in Fig.4-(a), i.e.,

θ(s, 0) = π, ∀s ∈ [0, L]. (39)

Coordinates of the center of a circular obstacle are xo =
[−0.30, −0.35]T and its radius is 0.01. Spring and damping
constants are set to kc = 1000 and bc = 100, respectively.
Runge-Kutta Fehlberg method integrates a set of motion equa-
tions of the object. First, as illustrated in Fig.4-(b) through
(c), the object falls down due to gravity. At time 0.30, the
intermediate part of the object collides with the obstacle as
plotted in Fig.4-(d). Then, the motion of the intermediate part
is immediately stopped due to the repulsive force. Instead,
the free end of the object is swung and it twines around
the obstacle as shown in Fig.4-(e) through (g). In Fig.4-
(g), curvature of the object takes larger. This implies that
flexural potential energy is stored in the object. Furthermore,
gravitational potential energy also increases. As such potential
energy is released, the free end of the object is swung back as
described in Fig.4-(h) through (l).
Figure 5 shows the third result of self-contact of a linear

object of length 1.00, flexural rigidity 0.02, and line density
0.006 with 11 nodal points under gravity. The distance between
the two endpoints of the object is reduced to 0.30 along the
horizontal line at its initial shape, as illustrated in Fig.5-(a).
The left endpoint of the object is fixed to the coordinate
origin and the right endpoint is available to move along x-
axis. Angles of both endpoint are fixed to horizontal angle. The
right endpoint is translated at velocity -1.50 from time 0.00 to
0.133. Spring and damping constants are set to k c = 1000
and bc = 100, respectively. Runge-Kutta Fehlberg method
integrates a set of motion equations of the linear object. As
illustrated in Fig.5-(d), the object collides with itself at time
0.12. After collision, the lower parts of the object deform
without penetrating each other as shown in Fig.5-(e) through

(h). Due to repulsive forces, the upper part of the object swells
as described in Fig.5-(f) through (h).
The above computations were performed on a 600MHz Al-

pha21164A CPU with 704MB memory operated by DIGITAL
UNIX V4.0D. Programs were compiled by DEC C Compiler
V5.6 with optimization option -O4. It took about 100 CPU
seconds to compute one step of the dynamic deformation in
all computations.
Thus, using our proposed technique, we can simulate dy-

namic deformation of a linear object considering geometrical
constraints and contact with other objects including itself.

VI. CONCLUSION

In this paper, the dynamic modeling of linear object
deformation considering geometrical constraints and contact
with obstacles was proposed. First, we formulated dynamic
2D deformation of an inextensible linear object based on a
differential geometry coordinate system. Second, we extended
the above formulation to dynamic deformation of the linear
object when forces/moments and geometrical constraints are
imposed on the object. Third, we modeled contact of a linear
object with a circular obstacle. It can be applied to self-contact
of the linear object. Finally, we demonstrated simulation results
using the proposed modeling technique. They showed dynamic
deformation of a linear object well qualitatively.
We will compare simulation results in this paper with

experimental results to verify the validity of our proposed
technique in future work.
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Fig. 4. Simulation of dynamic deformation of linear object contacting with circular obstacle
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Fig. 5. Simulation of dynamic deformation of linear object contacting with itself
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