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Abstract— This paper describes the dynamic modeling of
linear object deformation based on differential geometry
coordinates. Deformable linear objects such as cables and
strings are widely used in our daily life, electric industries,
medical operations. Modeling, control, and manipulation of
deformable linear objects are keys to many applications.
We have proposed the differential geometry coordinates to
describe the 2D/3D deformation of a linear object with the
minimum number of parameters. Based on this description,
we have formulated the static deformation of a linear object
using the differential geometry coordinates but the dynamic
deformation has not been investigated yet.

In this paper, we apply differential geometry coordinates
to the dynamic modeling of linear objects. First, we formulate
the dynamic 2D deformation of an inextensible linear object
based on a differential geometry coordinate system. Second,
we show simulation results using the proposed modeling
technique. Next, we apply the proposed dynamic modeling
to the control of a flexible link.

Index Terms— deformation, linear object, dynamics, mod-
eling, simulation, control

I. INTRODUCTION

Deformable linear objects such as cables and strings
are widely used in our daily life, electric industries, and
medical operations. Modeling, control, and manipulation
of deformable linear objects are keys to many applications:
robotic systems capable of manipulating linear objects,
automatic handling of electric cables and wires, and simu-
lation of medical surgery with threads.

Deformed shape of threads in a fabric has been described
geometrically [1]. In computer graphics, the particle-based
approach has been applied to simulate the motion of hairs.
Flexure and extension of hairs have been described in [2],
while flexure and torsion of hairs have been described in
[3], implying that flexure, torsion, and extension of a linear
object can be described using particle-based approach.
Deformation of a linear object can be modeled using beam
elements in FEM. Spline-based modeling has been applied
to the realtime simulation of soft tissues as well as sutures
in surgery [4]. Linear objects have been approximated
using beams in the engineering community; models exist
to describe small deflection of beams [5], and also large
deformation using nonlinear beam finite elements[6]. Fast
algorithms have been introduced to describe linear object
deformation using the Cosserat formulation [7].

We have proposed the differential geometry coordinates
to describe the 2D/3D deformation of a linear object

with the minimum number of parameters [8]. We have
established static formulation of a deformable linear object
using the differential geometry coordinates but the dynamic
modeling has not been investigated yet. In this paper, we
apply differential geometry coordinates to the dynamic
modeling of linear objects. First, we formulate the dynamic
2D deformation of an inextensible linear object based on a
differential geometry coordinate system. Second, we show
simulation results using the proposed modeling technique.
Next, we apply the proposed dynamic modeling to the
control of a flexible link.

II. DYNAMIC MODELING OF LINEAR OBJECT

DEFORMATION

In this section, we formulate the 2D deformation of an
inextensible linear object. Assume that a linear object of
length L bends in frame O − xy, as illustrated in Figure
1. One end of the object is fixed to but can rotate around
the origin. An external torque τ is applied around this end.
The other end is free to move. Let s be the distance from
the fixed end along the linear object. Let P (s) be a point
on the object specified by distance s. Let θ(s, t) be the
angle from the horizon at point P(s) and time t. Position
of point P(s) at time t is then described by[

x(s, t)
y(s, t)

]
=

∫ s

0

[
cos θ(u, t)
sin θ(u, t)

]
du.

Differentiating the above equation with respect to time t
yields the velocity vector at point P(s) given by[

ẋ
ẏ

]
=

∫ s

0

[ − sin θ
cos θ

]
θ̇ du.

P(0)

P(s)

P(L)

x

y

O

θ(s,t)
linear object

τ

Fig. 1. Dynamic 2D deformation of inextensible linear object
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Lagrangean formulation requires the kinetic energy of the
object. Kinetic energy T can be described as follows:

T =
∫ L

0

1
2
ρ(ẋ2 + ẏ2) ds.

where ρ denotes the line density at point P(s), which may
depend on s.

Let us divide region [0, L] into n small regions with a
constant interval h = L/n. Let P0 through Pn be nodal
points on the region, of which coordinates are denoted as
s0 through sn. Applying piecewise linear approximation to
function θ(s, t), the function can be described by

θ(s, t) = θi(t)Ni,j(s) + θj(t)Nj,i(s) (1)

in a divided region [si, sj ], where θi(t) = θ(si, t) and
θj(t) = θ(sj , t). Shape function Ni,j(s) takes 1 at si and
0 at sj while Nj,i(s) takes 0 at si and 1 at sj . Let Ai be
a set of nodal points adjacent to nodal point Pi:

Ai = { j | nodal point Pj is adjacent to nodal point Pi}.
Finite element approximation is applied to the kinetic

energy T of a deformable linear object. First, let us
introduce the following integrals:

Si,j(s; θ0, · · · , θn) =
∫ s

0

{sin θ(u, t)}Ni,j(u) du,

Ci,j(s; θ0, · · · , θn) =
∫ s

0

{cos θ(u, t)}Ni,j(u) du.

These integrals Si,j and Ci,j depend on θ0 through θn. The
velocity components at point P(s) are given by

ẋ(s, t) =
∑

[si,sj ]

{
−θ̇i(t)Si,j(s) − θ̇j(t)Sj,i(s)

}
,

ẏ(s, t) =
∑

[si,sj ]

{
θ̇i(t)Ci,j(s) + θ̇j(t)Cj,i(s)

}
.

The square of each velocity component is then described
by

ẋ2 =
∑

[si,sj ]

∑
[sk,sl]

{
θ̇iθ̇kSi,jSk,l + θ̇iθ̇lSi,jSl,k+

θ̇j θ̇kSj,iSk,l + θ̇j θ̇lSj,iSl,k

}
,

ẏ2 =
∑

[si,sj ]

∑
[sk,sl]

{
θ̇iθ̇kCi,jCk,l + θ̇iθ̇lCi,jCl,k+

θ̇j θ̇kCj,iCk,l + θ̇j θ̇lCj,iCl,k

}
.

Thus, kinetic energy T is described by a quadratic form
with respect to θ̇0 through θ̇n given by

T =
1
2

∑
i

∑
k

mi,k θ̇iθ̇k (2)

where

mi,k =
∫ L

0

∑
j∈Ai

∑
l∈Ak

ρ (Si,jSk,l + Ci,jCk,l) ds. (3)

Let M be a matrix of which the (i, k)-th element is given
by mi,k. Matrix M is referred to as the inertial matrix,
which is symmetric and positive-definite.

Let us compute partial derivative of inertia matrix com-
ponent mi,k with respect to a generalized coordinate θr.
Differentiating eq.(1) with respect to a generalized coordi-
nate θr, we have

∂

∂θr
θ(s, t) =

∑
p∈Ar

Nr,p.

This is followed by

∂Si,j

∂θr
=

∫ s

0

{cos θ(u, t)}



∑
p∈Ar

Nr,p


 Ni,j du,

∂Ci,j

∂θr
=

∫ s

0

{− sin θ(u, t)}



∑
p∈Ar

Nr,p


Ni,j du.

Thus,

∂Si,j

∂θr
=




∫ s

0

{cos θ} (Ni,j)
2 du r = i∫ s

0

{cos θ}Ni,jNj,i du r = j

0 otherwise

,

∂Ci,j

∂θr
=




∫ s

0

{− sin θ} (Ni,j)
2 du r = i∫ s

0

{− sin θ}Ni,jNj,i du r = j

0 otherwise

.

Consequently, partial derivative ∂mi,k/∂θr is given by

∂mi,k

∂θr
=

∫ L

0

∑
j∈Ai

∑
l∈Ak

ρ (
∂Si,j

∂θr
Sk,l + Si,j

∂Sk,l

∂θr
+

∂Ci,j

∂θr
Ck,l + Ci,j

∂Ck,l

∂θr
) ds. (4)

Lagrange equation of motion with respect to a general-
ized coordinate θi is formulated as follows:

∂L

∂θi
− d

dt

∂L

∂θ̇i

= 0.

Contribution of kinetic energy T to the above Lagrange
equation of motion is described by∑

k

Si,kθ̇k −
∑

k

mi,kθ̈k +
∑

j

Yi,j θ̇j

where

Si,k =
1
2




∑
j

(
∂mk,j

∂θi
− ∂mi,j

∂θk

)
θ̇j


 ,

Yi,j =
1
2

{
−

∑
k

∂mi,j

∂θk
θ̇k

}
.
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Since Si,k + Sk,i vanishes, matrix S of which the (i, k)-
th element is given by Si,k is skew-symmetric. Since Yi,j

coincides to Yj,i, matrix Y of which the (i, j)-th element is
given by Yi,j is symmetric. Let θN be a vector consisting
of θ0 through θn. Contribution of kinetic energy T to a set
of Lagrange equations of motion with respect to θ0 through
θn is then summarized in a vector form as follows:

Sθ̇N − M θ̈N + Y θ̇N. (5)

Assume that the potential energy of the object U consists
of flexural potential energy Uflex and gravitational potential
energy Ugrav, say,

U = Uflex + Ugrav.

Assuming that the bending moment at point P(s) on the
object is proportional to the curvature at that point, the
flexural potential energy is formulated as

Uflex =
∫ L

0

1
2
Rflex

(
dθ

ds

)2

ds, (6)

where Rflex denotes the flexural rigidity at point P(s).
Assuming that rigidity Rflex is constant, flexural potential
energy is approximated as follows:

Uflex =
∑

[si,sj ]

1
2

[
θi θj

]T Rflex

h

[
1 −1
−1 1

] [
θi

θj

]
.

Namely, flexural potential energy is described by a
quadratic form as follows:

Uflex =
1
2

θT
N K θN,

where K denotes the stiffness matrix of flexural deforma-
tion. Consequently, contribution of flexural potential energy
to a set of Langrange equations of motion is given by
−KθN. Let D be the weight per unit length at point P(s).
The gravitational potential energy is then given by

Ugrav =
∫ L

0

D y(s, t) ds.

Let −G(θN) be the contribution of gravitational potential
energy to a set of Lagrange equations of motion. The i-th
component of vector G coincides with the partial derivative
of Ugrav with respect to θi:

Gi =
∂Ugrav

∂θi
=

∫ L

0

D
∂y

∂θi
ds

where

∂y

∂θi
=

∫ s

0

cos θ(u, t)




∑
j∈Ai

Ni,j(u)


 du.

Applying any numerical integration, we can compute the
contribution of gravitational potential energy to a set of
Lagrange equations of motion. As a result, contribution of
potential energy U to a set of Lagrange equations of motion

with respect to θ0 through θn is summarized in a vector
form as follows:

−KθN − G(θN). (7)

Lagrangean of the linear object is formulated as

L = T − U + τ θ(0, t).

A set of Lagrange equations of motion with respect to θ0

through θn is then described as

Sθ̇N − M θ̈N + Y θ̇N − KθN − G(θN) + τ = 0

where τ = [τ, 0, · · · , 0]T . Let ωN be a vector consisting of
angular velocities θ̇0 through θ̇n. The above set of equations
can be rewritten as follows:

θ̇N = ωN,

M ω̇N = SωN + Y ωN − KθN − G(θN) + τ . (8)

Note that matrices M , S, and Y depend on vector θN.
Individual elements of matrix M can be computed by
eq.(3). Individual elements of matrices S and Y can be
calculated through partial derivatives given in eq.(4). We
can compute these partial derivatives using any numerical
integration method.

In this section, we have formulated the 2D dynamic
deformation of an inextensible linear object, which is
described by one function θ(s, t). This formulation can be
extended to the 2D dynamic deformation of an extensi-
ble linear object, which is described by two independent
functions.

III. SIMULATION

This section describes two simulation results of dynamic
2D deformation of an inextensible linear object.

Figure 2 shows a sequence of deformed shapes of an
inextensible linear object of length 1.00, bend rigidity 1.00,
and line density 1.00 under gravity. The length is divided
into 10 small intervals; implying that the deformation can
be approximated by 11 nodal points. The left endpoint
of the object is fixed to the coordinate origin but is free
to rotate. Constant torque 5.00 is applied around the left
endpoint. Runge-Kutta method with interval time 0.001
integrates a set of motion equations of the linear object.
The initial shape at time 0.00 is plotted in Figure 2-(a).
After 0.05 seconds, the left side of the object moves up
because of the torque applied around the left endpoint while
its right side moves down because of gravity, as plotted
in Figure 2-(b). At time 0.15 through 0.30, curvature of
the object takes larger values as before; suggesting that
flexural potential energy is stored in the object, as shown
in Figure 2-(d) through (g). At time 0.40, the right endpoint
goes forward, as described in Figure 2-(i), after the stored
potential energy is released. This simulation result given in
the figures shows dynamic deformation of a linear object
well qualitatively.

Figure 3 shows another sequence of deformed shapes of
an inextensible linear object of length 1.00, bend rigidity
1.00, and line density 1.00 under gravity. The length is
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Fig. 2. Simulation of dynamic 2D deformation of linear object

divided into 10 small intervals; implying that the defor-
mation can be approximated by 11 nodal points. The left
endpoint is fixed to the coordinate origin and both ends are
free to rotate. Runge-Kutta method with interval time 0.001
integrates a set of motion equations of the linear object. The
distance between the two end points of the linear object
is reduced to 0.6 along the horizontal line at its initial
shape, as illustrated in Figure 3-(a). Namely, two positional
constraints between the two endpoints are imposed on the
object. After the two constraints are released at time 0.00,
the right endpoint moves in the right direction, as plotted
in Figure 3-(b) and (c), then it goes up as described in
Figure 3-(d) and (e). After time 0.20, the left side falls
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Fig. 3. Simulation of dynamic 2D deformation of linear object
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Fig. 4. Control of flexible link

down due to gravity, as described in Figure 3-(j) through (l).
This simulation result given in the figures shows dynamic
deformation of a linear object well qualitatively.

The above computations were performed on a 600MHz
Alpha21164A CPU with 704MB memory operated by
DIGITAL UNIX V4.0D. Programs were compiled by DEC
C Compiler V5.6 with optimization option -O4. It took
about 57 CPU seconds to compute one step of the dynamic
deformation in both computations.

IV. CONTROL OF FLEXIBLE LINK

This section describes the control of a flexible link. Con-
trol of flexible manipulators has been extensively studied
in the past decades. Many of the proposed control laws
use strain signals to detect the deformation of a flexible
manipulator[9], [10]. Strain signals are often noisy during
the dynamic motion of a manipulator and tend to be blurred
by an electomagnetic field due to actuators and their driving
circuits. In this paper, we employ visual signals instead
of strain signals to detect the deformation of a flexible
structure.

We assume that the dynamic behavior of a flexible link
can be described by 2D deformation of an inextensible
linear object. Let θ0 be the angle from the horizon at base
point P(0), where a torque is applied to a flexible link,
as illustrated in Figure 4. Let θe denotes the angle from
the horizon of vector connecting base point P(0) and tip
point P(L). This angle is referred to as the tip angle. Note
that the tip angle can be computed from the tip position
observed by a vision system. Goal of a control law is to
guide the tip angle θe to its desired angle θd and to suppress
the vibration of the link. Let us first introduce the following
PI term with respect to the tip angle so that the tip angle
can be guided to its desired angle:

τtip = Ke
p(θd − θe) + Ke

i

∫ t

0

(θd − θe) dt,

where Ke
p and Ke

i denote proportional and integral gains
of tip angle feedback. Let us introduce the damping term
given by

τbase = −K0
d θ̇0,

where K0
d stands for a derivative gain of base angle

feedback. Let us introduce the following term to suppress
the vibration of the link:

τsup = Ksup
p (θe − θ0),
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Fig. 5. Simulation results of control law

where Ksup
p represents a proportional gain. As a result, a

control law for a flexible link is described as

τ = τtip + τbase + τsup.

Simulation results are plotted in Figure 5. The desired
angle θd is constantly equal to 0. Figure 5-(a) shows a result
without vibration suppress term τsup. Figures 5-(a-1) and
(a-2) describe the base and tip angles of a flexible link.
As plotted in the figures, tip angle θe vibrates even after
base angle θ0 converges to a certain angle. Figure 5-(b)
shows a result with the vibration suppress term. As plotted
in Figures 5-(b-1) and (b-2), tip angle θe converges to its
desired value as base angle θ0 converges to a certain angle.
Consequently, we find that the proposed vibration suppress
term is effective to the control of a flexible link.

The proposed control law is experimentally verified. A
flexible link composed of a spring steel of 0.5mm thickness
is driven by an AC servo motor at the base point. An LED
is attached to the tip point of the link. The position of the
LED is detected using a 1000Hz vision system consisting
of a CMOS image camera and an FPGA. A CMOS
image camera ITL-HSC-AD-SDK can capture successive
1280×504 pixel images at 1000Hz. The captured images
are sent to an FPGA, Xilinx Vertex-II 6000. Circuit to
compute the image gravity center of a captured image is
implemented on the FPGA to compute the position of the
LED within 1msec. As a result, the vision system can detect
the tip position of a flexible link at 1000Hz. The detected
position is sent to a PC, which controls the flexible link
according to the proposed control law.

Experimental results are plotted in Figure 6. The desired
angle θd is constantly equal to 0. Figure 6-(a) shows a
result without the vibration suppress term. As plotted in
Figures 6-(a-1) and (a-2), tip angle θe vibrates even after
base angle θ0 converges to a certain angle. Figure 6-(b)
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Fig. 6. Experimental results of control law

shows a result with the vibration suppress term. As plotted
in Figures 6-(b-1) and (b-2), tip angle θe converges to its
desired value as base angle θ0 converges to a certain angle.
Figures 7-(a) through (f) demonstrate the motion of the
flexible link. From the above experiment, we find that the
proposed vibration suppress term is effective to the control
of a flexible link.

V. CONCLUDING REMARKS

We have described the dynamic modeling of linear object
deformation based on differential geometry coordinates
and its application to the control of a flexible link. First,
we have formulated the 2D dynamic deformation of an
inextensible linear object using differential geometry co-
ordinates. A set of Lagrange equations of motion can be
derived through finite element approximation of kinetic and
potential energies of the object. Simulation results have
demonstrated that the proposed method can compute the
linear object deformation well. Next, we have applied the
proposed dynamic modeling to the control of a flexible link.
We have shown that a simple PI-control of the tip angle of
a flexible link can guide the tip angle to its desired value
without physical parameters of the link.

Future issues include 1) three-dimensional dynamic de-
formation and 2) application to knotting/unknotting of de-
formable linear objects. Differential geometry coordinates
requires four independent functions to describe 3D defor-
mation of a linear object. A set of Lagrange equations can
be derived as well by applying finite element approximation
to the four functions. Planning of knotting/unknotting of
deformable linear objects requires physical simulation of
the process. Dynamic simulation of linear object deforma-
tion can be applied to this simulation after formulating self-
contact of a linear object in dynamics.

(a) 0s (b) 0.1s

(c) 0.2s (d) 0.5s

(e) 1s (f) 2s

Fig. 7. Experimental result on vibration suppress control
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