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Abstract

A systematic approach to modeling of deformable
soft parts for thewr manipulation is presented. Vari-
ous deformable parts such as cords, leather products,
and sheet metals are manipulated and are handled in a
lot of manufacturing processes. Deformation of these
parts 1s often utilized in order to manipulate them suc-
cessfully while the manipulation sometimes fails be-
cause of unexpected deformation of the parts. Model-
g of deformable objects is thus required so that the
shape of the soft parts can be analyzed and can be eval-
uated on a computer.

In this paper, we will develop an analytical method
to model the shape of a deformable object. Especially,
we deal with deformation of a bendable thin object.
Firstly, the process of manipulating a deformable ob-
gect s analyzed with regard to how the object inter-
acts with other objects around it. Secondly, model of a
bendable thin object 1s formulated according to a prin-
ciple that the potential energy of the object reaches to
the minimum at its stable shape. Thirdly, algorithm to
compute the deformed shape of the object is developed
by applying a nonlinear programming technique. This
algorithm is applied to some examples to show how it
works. Finally, a ssmple experiment 1s done to demon-
strate the validity of the modeling method proposed in
this paper.

1 Introduction

In the past decades, solid modeling techniques have
been developed in design and manufacturing area.
Solid modeling systems have a capability of handling
the shape of rigid objects on a computer and many
design and manufacturing processes have been auto-
mated by utilizing the modeling systems [1]. Most
of manufacturing processes that deal with deformahle
soft objects such as rubber tubes, sheet metals, cords,
leather products, and paper sheets are, however, still
done by human workers. Automatic handling and ma-
nipulation of deformable objects are eagerly required.
Manipulative operations of deformable objects are of-
ten performed by utilizing their deformation actively
while the operations may result in failure because of
unexpected deformation of the objects during the ma-
nipulation process. Modeling of deformable objects is
thus necessary so that we can evaluate the shape de-
formation of soft parts on a computer and can derive
task strategies that carry out manipulative operations
successfully.

Automatic handling of deformable parts in shoe
and garment manufacturing have bheen studies by
many researchers [2]. These studies have been, how-
ever, done for individual processes independently and
no systematic approaches have been developed yet.
Some analytical approaches have been also studied to-
ward a systematic approach. Zheng et al. have analyt-
ically developed a strategy that achieves the insertion
of a soft peg into a hole [3]. Villarreal and Asada have
proposed a concept of buffer zones that describe dis-
tributed compliance of the mated parts and have de-
veloped a method to derive task strategies using the
buffer zones [4].

Solid modeling techniques have been applied to
the studies on manipulation of rigid objects so that
the model of the manipulated objects can be built.
Thanks to the solid modeling techniques, a system-
atic approach to the manipulation of rigid objects has
been developed recently. On the contrary, we have
no systematic method of modeling deformable objects
during their manipulative operations. Solid mechanics
has been studied for a long time in order to analyze
deformation of a solid body by investigating the re-
lationship between stress and strain of the object [5].
It is not easy to analyze large deformation of a soft
object such as paper and leather by solid mechanics
approach, which basically deals with small deforma-
tion of a solid body. In computer graphics area, shape
modeling of cloth objects has been proposed [6], and
deformation of elastic objects has been studied [7].
These studies are not applicable to manipulative op-
erations of deformable objects directly, since manipu-
lation processes are not investigated in these studies.

In this paper, we will develop a systematic approach
to the modeling of deformable objects for their ma-
nipulation. Especially, we will investigate the defor-
mation of a bendable thin object such as paper and a
sheet metal. Firstly, the process of manipulative oper-
ations is analyzed with regard to how a deformable ob-
ject contacts with other objects around it. Secondly,
the potential energy of the deformable object and the
geometric constraints imposed oun it are formulated in
order to compute the deformed shape of the object by
solving these equations. Thirdly, a numerical method
to derive the deformed shape is developed by apply-
ing a nonlinear programming technique. Finally, an
experimental result is shown in order to demonstrate
the validity of the approach proposed in this paper.



2 Manipulation Process of Deformable
Parts

Manipulative operations such as grasping and part-
mating of deformable soft objects are often performed
by utilizing deformation of the objects. For example,
bending the object is one strategy to pick up a thin
deformable object such as paper and a sheet metal
on a flat horizontal table. Deformation of the object
sometimes brings on the failure of manipulative oper-
ations. It is thus necessary to analyze the deformation
of the object caused by the interaction with other ob-
jects during the manipulation process so that we can
evaluate if the deformation is appropriate to achieving
the manipulative operation.

Manipulation process of rigid objects can be mod-
eled as a series of tramsitions among contact states
between the objects to be mated [8]. At individual
contact states, the geometric constraints imposed on
the manipulated object differ significantly one another
and the control strategy of object motion is thus differ-
ent. Manipulation process of a deformable soft object
can be regarded as a series of state transitions as well.
For example, an operation to pick up a thin object
on a flat horizontal table consists of a series of tran-
sitions among four states, as shown in Figure 1. At
individual states, the geometric constraints imposed
on the object differ significantly one another, that is,
boundary conditions are different from one another.
Thus, individual states are corresponding to different
fundamental operations, which cause deformation and
motion of the object. State (b) shown in the figure is,
for example, corresponding to the operation of bend-
ing the object by applying forces to it while state (d)
describes the operation of lifting the object by mov-
ing fingertips upward. Transitions from one state to
another state are corresponding to fundamental oper-
ations that change the geometric constraints imposed
on the object. Transition from state (a) to state (b)
is, for example, corresponding to the operation of con-
tacting fingertips to the object while transition from
state ?C) to state (d) expresses the operation of re-
leasing the fingertips form the object. Manipulation
process of deformable objects can be, therefore, mod-
eled as a series of fundamental operations.

3 Modeling Bend Deformation of Thin
Objects
3.1 Basic Principle

As mentioned in the previous section, manipula-
tion process of a soft object can be regarded as a
series of fundamental operations that cause deforma-
tion and motion of the object. Especially, deformation
operations are key to successful manipulation of the
deformable object. Deformed shape of a soft object
strongly depends upon the direction and the magni-
tude of forces applied to it, the geometric constraints
imposed on it by other objects, material properties of
the object under a variety of environments around it,
and so on. That is, deformed shape of the object is
intensively related to physical properties of the object
and the environment. It is thus necessary to derive
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Figure 1: Process of pickup operation

deformed shape of the object based on physical mod-
els of the object, the environment, and the interaction
between them.

In this paper, we will adopt a basic principle that
the potential energy of a deformable object reaches to
the minimum under the geometric and physical con-
straints imposed on it at its stable deformed shape.
We will ignore dynamical effects during a bending op-
eration. In the following sections, we will investigate
the uniform bend deformation of a thin object such as
paper and a sheet metal.

3.2 Formulation of Potential Energy and
Geometric Constraints

In this section, we will formulate the potential en-
ergy of a bendable thin object and the geometric con-
straints imposed on it. We assume that a thin object
on a horizontal table is deformed uniformly, as shown
in Figure 2. Let L be the length of the object, s be
the distance from one end point of the object along it,
and 6(s) be the angle from the horizon at coordinate
s. As shown in the figure, take the x— and z— axes in
the horizontal direction and in the vertical direction,
respectively. Coordinates & and z corresponding to
distance s is then describe as follows, respectively:

x(s) = / cosfds + xg, (1)
Jo

z(s) :/ sin fds + zq (2)
0

where x¢ and zy denote r— and z— coordinates at the
left end point of the object, respectively. We assume
that potential energy of the object U is given by the
sum of elastic energy Upeng and gravitational energy
Ugrav. Namely,

U= [Jbend + qu”,. (3)
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Figure 2: Bend deformation of thin object

Assuming that bend moment at an arbitrary point
of the object is proportional to the curvature at that
point, elastic energy Upepng 1s given by

L
1 .
Uband:/ §D02ds (4)
0

where @ is the derivative of function # with respect to
coordinate s and D denotes the bend rigidity of the
object, which is assumed to be constant. Gravitational
energy is describe by

L
[]grau = / Ag:d,s (5)
0

where A denotes mass per unit length of the object
and g represents the acceleration of gravity.

Due to the interaction between a thin object and
other objects such as fingertips and a table, some ge-
ometric constraints are imposed on the object. Let us
derive the geometric constraints imposed on the ob-
ject. Contact between the object and the fingertips
yields some geometric constraints. Let #y and 67 be
the angles from the horizon at both end points, re-
spectively. Then, we have

6(0) =6y, 6(L) =0, (6)

Let [ be the distance between the end points of the
deformed object. Since the distances between the end
points along x— and z— axes are given by I and 0,
respectively, we have the following equations:

z(Ly=wx0+1, z(L)=z (7

Contact between the object and the table yields other
geometric coustraints. Note that any points on the
object must be located over the horizontal table or on
it. This condition is described as follows:

z(s) > 2z Vs €[0,L] (8)
Computing function #(s) that minimizes potential

)
energy U described as eq.(3) under geometric condi-
tions given by eqs.(6), (7), and (8), we can derive the

deformed shape of a bendable thin object. Namely,
computation of the deformed shape results in a vari-
ational problem. Note that the geometric constraints
imposed on an object consist of not only equational
conditions such as eqs.(6) and (7) but also inequality
conditions, for example, eq.(8). Condition that an ob-
ject is not interfered with other objects is described
by a set of inequalities, since mechanical contacts be-
tween the objects constraints the object motion uni-
directionally.

4 Computation of Deformed Shape
4.1 Computation Algorithm

Computation of the object shape results in a vari-
ational problem as mentioned in the previous section.
One method to solve a variational problem is Euler’s
approach, which is based on the stationary condition
in function space. In Euler’s approach, equational con-
ditions are embedded into the objective function using
Lagrange’s undetermined coefficients, and the object
shape can be obtained by solving Euler’s differential
equations. This approach has, however, the following
drawbacks:

e Inequality conditions cannot be taken into
account.

o Differential equations are often difficult to
solve them.

Conditions that individual objects are not interfered
with one another are mathematically described by in-
equalities such as eq.(8), that is, the geometric con-
straints resulting from mechanical contacts are uni-
directional. Note that these constraints are nonholo-
nomic [9]. The shape of an object that minimizes po-
tential energy thus does not necessarily satisfy the sta-
tionary condition. This implies that Euler’s approach,
which is based on the stationary condition, is not ap-
plicable.

In this paper, we will develop a direct method based
on Ritz’s method [10] and a nonlinear programming
technique. Let us express function #(s) by a linear
combination of basic functions 1 (s) through ¢, (s):

a A
0(s) =D aipi(s) = a’p (9)
i=1
where @ = (a1,az,---,a,) is a vector consisting of
coefficients and ¢ = (1,9, -, 9,,) is a series of basic
functions. Substituting eq.(9) into eq.(3), potential

energy U is described by a function of coeflicient vector
a as follows:

L
Ula) = /%D(aT<,b)2cl5+
0

/OL Ag{/ﬂs sin(a’p)dsyds.  (10)

The geometric constraints given by eqs.(6), (7), and
(8) are also described by conditions concerning coef-
ficient vector @. In addition, discretizing eq.(8) by



dividing interval [0, L] into N small intervals yields a
finite number of conditions. As a result, a set of the
geometric constraints is expressed as follows:

a"e(0) = b, a"p(L) =6, (11)
/ cos(a’p)ds = xg + 1,
I
/ sin(alp)ds = z (12)
0

/ sin(a’p)ds > 2
0
Vi =0,1,---,N (13)

We can determine the deformed shape of an object
by computing coefficient vector a that minimizes the
potential energy U expressed by eq.(10) under the ge-
ometric constraints given by eqs.(11), (12), and (13).
This minimization problem under equality and in-
equality conditions can be solved by use of a nonlin-
ear programming technique such as multiplier method
[11]. The deformed shape of the object correspond-
ing to coefficient vector a can be computed by use of

egs.(1) and (2).

4.2 Numerical Examples

In this section, some numerical examples are shown
in order to demonstrate how the proposed method
computes the deformed shape of a bendable thin ob-
ject. The first example demonstrates that the shape
of the object with large deformation can be computed
simply by use of the proposed method. The second
example shows how gravity has an effect on the de-
formed shape. The third example shows the deformed
shape of the object surrounded by some obstacles. The
following set of basic functions are used in the compu-
tation of these examples:

o = (1, P2, P3, P4, ¥5)
"7T~? 2ws . 4ms 4rs
= (1, sin — 70 €08 s sin——, cos T) (14)
Assume that the length of the object L is equal to 100
in the following examples.

The first example shows the object shapes com-
puted for some values of I, which denotes the distance
between the end points of the deformed object. Ta-
ble 1 describes the computational result of coefficients
ay through as and potential energy U with respect to
some values of distance [; 90, 70, 50, 30. In this exam-
ple, potential energy of the object is assumed to be
equal to its bend energy, that is, gravitational energy
of the object is neglected. Both angles from the hori-
zon at the end points of the objec‘r fy and 6; are as-
sumed to be O(rad). As shown in the table, coefficients
except ay are equal to zero. Namely, the deformed
shape in this example can be characterized coefficient
a2, which is corresponding to base function ¢,. Fig-
ure 3 illustrates the deformed shapes computed from
coefficients listed in the table. The proposed method

Table 1: Example of computed coefficient vector and
potential energy

l ay a9 a3 aq as L‘T

90 | 0.000 0.641 0.000 0.000 0.000 | 0.041
70 | 0.000 1.141 0.000 0.000 0.000 | 0.129
50 1 0.000 1.521 0.000 0.000 0.000 | 0.228
30 | 0.000 1.869 0.000 0.000 0.000 | 0.345
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Figure 3: Example of computed object shape

has a capability of computing the shape for a thin ob-

ject with large deformation, as shown in the figure.

We find that the deformed shape is symmetry with
respect to an axis along the z-axis. Note that coeffi-
cleuts ap, az, and as, which are corresponding to even
functions ¢q, vz, and @5, respectively, are equal to
zero. This implies that the deformed shapes are axial
symietry.

The second example demonstrates the computation
of the object shape considering the gravitational en-
ergy. Normalizing the potential energy and the geo-
metric constraints by means of dividing variable s by
length L, we find that the shape of the object is de-
termined by the following dimensionless quantity:

Ag

5 L’ (15)

/J:

Quantity p represents the contribution of the gravita-
tional force to the shape of an object. Especially, the
gravitational force is neglected at p = 0.0. Table 2
describes the computational result of the coefficients
and the potential energy with respect to various val-
ues of p; 0.0, 1.0, 2.0, 3.0, 5.0 (x10%). The distance
between the end points [ is fixed to 70 and both an-
gles from the horizon at these points o and #; are
equal to O0(rad). As shown in the table, coefficients ag
and a5, which corresponding to even functions ¢3 and
s, respectively, are nonzero when quantity p exceeds
2.0 x 10%. This implies that the deformed shape of the
object is not axial symmetric.



Table 2: Example of computed coefficient vector and
potential energy considering gravity

—_
]
w
A~
o
-

a7y €53 a3 ay as

0.000 1.141 0.000 0.000 0.000|0.129
0.000 1.135 0.000 -0.130 0.000 | 0.281
0.000 1.074 -0.004 -0.420 0.005 | 0.417
0.000 0.900 0462 -0.332 -0.462 | 0.518
0.000 0.672 0.673 0.000 -0.673 | 0.702
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Figure 4: Example of computed object shape consid-
ering gravity

The deformed shapes of the object corresponding
to coefficients listed in the table are shown in Figure
4. As shown in the figure, the height of the object
decreases with increasing quantity p. In addition, the
deformed shape is not symmetric any more when p
exceeds 2.0 x 103. Note that we have two shapes sym-
metric each other with respect to the central vertical
line in these cases. One shape of the two is illustrated
in the figure. In order to verify that the unsymmetric
shape minimizes the potential energy, let us compute
the coefficient vector and the potential energy of the
object assuming that the object shape is symmetric.
Potential energy U is, for example, equal to 0.746 at
p = 3.0 x 10 assuming that the deformed shape is
symmetric, while the minimum value of potential en-
ergy is equal to 0.518 as shown in the table. Namely,
the symmetric shape does not satisfy the condition
that the potential energy reaches its minimum at a
stable deformed shape. This implies that deformed
shapes are unsymmetric when dimensionless quantity
p exceeds a certain value.

The third example shows the computed shape of a
deformable object surrounded by obstacles. Note that
the condition that objects are not interfered with one
another can be described by a set of inequalities such
as eq.(8), since kinematic constraints imposed on an
object by mechanical contact with the other objects
are unidirectional. The deformed shape of an object

Table 3: Example of coefficients describing shape of
object surrounded by obstacles

ay a2 as aq as L‘T
-0.046 0.419 -0.483 0.817 0.529 | 0.415
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Figure 5: Example of object shape among obstacles

surrounded by obstacles can be derived by use of the
proposed method due to its capability of taking in-
equality conditions into account. Table 3 provides the
coefficients and the potential energy describing the de-
formed shape of an thin object surrounded by a circu-
lar obstacle with its center at coordinates (35.0, 25.0)
and with radius 15. The shape of the object is shown
in Figure 5. As shown in the figure, the object is
deformed with contacting to the obstacle and the de-
formed shape is unsymmetric.

5 Experimental Result

In this section, we will show an experimental result
of the shape measurement in order to demonstrate the
validity of the proposed method. Let us measure the
deformation of a sheet of copy paper 200(mm) long,
30(mm) wide, and 92(pmn) thick. The bend rigidity
D and the weight Ag per unit length of the paper
are 10*(gw - mm?) and 2 x 1073(gw/mm), respec-
tively. The paper is deformed so that the distance
! be 180, 140, and 70(mm). Measurement values of
the deformed paper and the computational values by
the proposed method are plotted in Figure 6. The
solid and the dotted lines represent the computational
result and the measured values, respectively. In the
computation, we assume that angles 6y and 6 are
equal to zero. Quantity p turns out to be equal to
1.60. This implies that the gravitational energy is ne-
glectable in the computation. The difference between
the computed values and experimental values along z-
axis is 11(mm) at most. The ratio of the difference to
the length of the paper is approximately 6%.

The difference between the computed shapes and
the measurement values results from the discrepancy
between the given values and the actual values of an-
gles 0y and #;. From the measurement values, we
estimate that angles 6y and §; are actually equal to
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Figure 6: Comparison between computed values and
measured values

10° and 0°, respectively. The computed values using
the estimated angles are illustrated in Figure 7. The
difference between the computed values and experi-
mental values along z-axis is 2(mm) at most. Namely,
the ratio of the difference to the paper length is re-
duced to 1%. As a result, we conclude that the pro-
posed method is appropriate to the deformed shape
modeling of a copy paper.

6 Concluding Remarks

An analytical approach to the modeling of de-
formable objects for their manipulation has been de-
veloped based on the physical properties of the ob-
jects. Firstly, process of manipulating a deformable
object was modeled as a series of fundamental oper-
ations. We found that some fundamental operations
cause deformation and motion of the object whereas
the other operations change the geometric constraints
imposed on the object. Secondly, the potential en-
ergy of an object and the geometric constraints im-
posed on it were formulated. We found that the ge-
ometric constraints consisted of inequality conditions
as well as equational conditions. The deformed shape
of the object can be derived by minimizing the poten-
tial energy under the geometric constraints. Thirdly,
an algorithm that derives the object shape was devel-
oped by applying a nonlinear programming technique.
We have demonstrated that the shape of the object
with large deformation surrounded other objects can
be computed using the proposed algorithm. Finally, a
simple experiment was done in order to demonstrate
the validity of the proposed approach. We have shown
that deformed shape of a copy paper can be modeled
appropriately by use of the proposed method.

Using the modeling technique proposed in this pa-
per, we can analyze and can evaluate the deformed
shape of a uniform thin object under various environ-
ments on a computer. This enables us to plan manip-
ulative operations such as handling and part-mating
that deal with these deformable parts.
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Figure 7: Computational values using estimation of
actual angles from horizon at end points
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