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Abstract

A static analysis of deformable object grasping
based on bounded force closure is presented. There are
many manipulative operations that deal with deform-
able objects in manufacturing processes. Manipulative
operations for these objects are often performed by uti-
lizing their deformation actively while the operations
may result i failure because of unexpected deforma-
tion of the objects during the manipulation process.
In order to perform the manipulative operations for
deformable objects successfully, it 1s necessary to eval-
uate their deformation by butlding object models and to
derive task strategies by analyzing manipulation pro-
cesses using the object models.

In this paper, we will analyze stable grasping of
deformable objects based on the concept of bounded
force closure. Firstly, we well introduce the concept of
bounded force closure, which ts an extension of force
closure condition. Secondly, we will investigate the
necessary condition for bounded force closure in or-
der to deriwve the properties of bounded force closure
grasping. Thirdly, we will formulate the deformation
of linear objects as an example of deformable objects
and we will propose a procedure to evaluate stability
of deformable object grasping. Finally, some numeri-
cal examples will be shown in order to demonstrate the
effectiveness of our proposed method.

1 Introduction

Many manufacturing processes that deal with de-
formable objects such as rubber tubes, sheet metals,
cords, leather products, and paper sheets have been
automated but most handling and manipulative pro-
cesses are still done by humans. Automatic handling
and manipulation of deformable objects are thus ea-
gerly required. Manipulative operations for deforma-
ble objects are often performed by utilizing their de-
formation actively while the operations may result in
failure because of unexpected deformation of the ob-
jects during the manipulation process. Evaluation of
the deformation of these objects on a computer in ad-
vance using the object models is thus necessary so that
we can perform the manipulative operations success-
fully.

Furthermore, in order to perform such manipulative
operation successfully, it is important to derive task
strategies by analyzing the manipulative processes us-

ing deformable object models. Grasping is one of basic
operation in the manufacturing processes. Two con-
cepts for evaluation of stability in grasping of rigid
objects, form closure[l] and force closure|2] have been
analyzed. In grasp analysis, contacts between fingers
and objects are analyzed extensively[3][4]. Analysis
and planning of manipulation using the theory of poly-
hedral convex cones has reported[b]. However, these
analyses assume that objects to grasp are rigid and do
not mention the case that objects are deformable.

In this paper, we will analyze stable grasping of
deformable objects based on the concept of bounded
force closure. Firstly, we will introduce the concept of
bounded force closure, which is an extension of force
closure. Secondly, we will investigate the necessary
condition for bounded force closure and will derive the
properties of bounded force closure grasping. Thirdly,
we will formulate the deformation of linear objects as
an example of deformable objects and will propose a
procedure to evaluate stability in deformable object
grasping. Finally, some numerical examples will be
shown in order to demonstrate the effectiveness of our
proposed method.

2 Formulation of Deformable Object
Grasping

Concepts of form closure and force closure have
been proposed for evaluating stable grasping of rigid
objects. In this section, we will examine whether these
concepts can be applied to grasping of deformable ob-
jects or not and will introduce a new concept for de-
formable object grasping.

First, let us examine whether the form closure con-
dition can be applied to the grasping of deformable
objects. Form closure has been defined as to constrain
all degrees of freedom of object motion. Note that the
degree of freedom of a deformable object can be re-
garded to be infinite. Thus, all of the freedom cannot
be constrained by a finite set of fingers. This implies
that the concept of form closure cannot be applied to
the grasping of deformable objects.

Next, we will examine whether the force closure
condition can be applied to the grasping of deforma-
ble objects. Consider that a force and moment p is
imposed on an arbitrary point of an object. If an ar-
bitrary force and moment p is balanced with reaction
forces from fingers around the object, location of the



fingers with respect to the object satisfies the condi-
tion for force closure. Assuming that a rigid object
contacts with ¢ fingers, the force closure condition can
be described as follows:
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where F'y is a body force, w; i1s a wrench vector at
the ¢-th contact point, and R; is the magnitude of the
t-th wrench. Let us investigate whether the above con-
dition can be satisfied in the grasping of deformable
objects. Note that the i-th finger exerts a constant
grasping force at the i-th contact point in the sta-
ble grasping. Let us apply an external force at the
t-th contact point in the same direction of the i-th
grasping force. When the magnitude of the external
force exceeds the magnitude of the grasping force, the
contact between the deformable object and the i-th
finger is lost. This implies that the above condition is
never satisfied for the grasping of deformable objects.
Furthermore, it is found that the magnitude of the
forces 1s bounded for the stable grasping of deform-
able objects. Let us introduce the following concept
for the grasping of deformable objects. Assume that
the force fn whose magnitude is f and whose direc-
tion is n 1s imposed at a certain point « of the object.
The wrench corresponding to this force is given by
wi =[nT, (2 xn)T]T. From the above discussion,
we find that the force closure condition is satisfied un-
less the magnitude f exceeds a certain bound, which
depends on position # and direction n. Let F'(x, n)
be the upper bound of magnitude f and Fig be the
smallest value of F'(x, n):

Frote = minmin F'(x, n).
T n

Note that the force closure condition is satisfied for
arbitrary @ and arbitrary n unless the magnitude of an
external force exceeds Fis.. Let us call this condition
bounded force closure. From the above discussion, the
condition for bounded force closure can be described
as follows:
Ve, Vn,
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where we call Fir. allowable maximum external force.
Assume that the moment whose magnitude is m
and whose rotational axis is given by d is imposed on
the object. The wrench corresponding to this moment
is given by w,,, = [0T, d']T. Note that if magnitude m
is smaller than a certain value, the condition for force
closure is satisfied. Let M (d) be the upper bound of
magnitude m and Myps. be the smallest value of M(d):

bec = chiln M(d)

We find that the force closure condition is satisfied
for arbitrary d unless the magnitude of an external
moment exceeds Mpg.. Therefore, an additional con-
dition for bounded force closure can be described as
follows:
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where we call My allowable maximum external mo-
ment.

When both conditions given by eqs.(2) and (3)
are satisfied, we can prove that grasping of a de-
formable object is stable against arbitrary external
force/moment, [ ¥, m™]T, if the magnitude of f is
smaller than Fi. and the magnitude of m is smaller
than bec~

3 Evaluation of Stability in Deforma-
ble Object Grasping

In this section, we will analyze the bounded force
closure condition given by eqs.(2) and (3). Let w,
through w,, be wrench vectors imposed on a deform-
able object by fingers. The region of resultant reaction

forces is then given by

t
i=1

Eq.(2) is then rewritten as follows:
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The relationship between body force F'; and region W
can be classified into three cases:

case 1 —Fy ¢ W
case 2 —F, ¢ oW
case 3 —F, € Wyint

where W denotes the boundary of region 1 and Wnt
denotes the interior of region W.

Let us explain the above relationship using a simple
2D example illustrated in Figure 1. In this example,
region W consists of two wrench vectors, w; and ws.
Wrenches —F'y,, —F}s, and —F,3 corresponding to
case 1, 2, and 3, respectively. When F' coincides F'yy
or Fyo, —fw; — Fy is not involved in region W for an
infinitesimal positive value f along a certain wrench
wy. This implies that eq.(4) is not satisfied in case 1
or case 2. Therefore, bounded force closure grasping
must satisfy the following equation:

— Fy € W™ (5)

We can prove that the above condition must be satis-
fied in general.
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Figure 1: Condition for bounded force closure

Figure 2: Region for bounded force closure

The interior set W™* is empty when the dimension
of region W is less than six. This implies that a nec-
essary condition for eq.(4) is given by

dimW = 6.

Let us consider a case where the body force F'y 1s equal
to zero. In this case, it can be proved that region W
must coincide to the whole region R®. Namely,

W=R° if F,=o.

From eq.(2), it turns out that R; is involved in
[0, Pue] if F'y = 0 and —n = w; are satisfied because
Jfw;+R;w; = o. Therefore, a non-negative coefficient
R; with respect to a certain wrench vector w; upper

bounded:
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From the above discussion, we find that the set of
wrenches that satisfy the bounded force closure con-
dition given by eqs.(2) and (3) can be illustrated as
Figure 2. Recall that the region of wrenches that sat-
isfy the force closure condition given by eq.(1) can de-
scribed by a semi-finite region, which is referred to as
a polyhedral convex cone[5]. The region of wrenches
that satisfy the bounded force closure condition can be
described by a finite region shown in the figure rather
than a semi-finite region.

4 Modeling of Linear Object Deforma-
tion
4.1 Formulation of Deformation
In this section, we will briefly explain the formula-

tion of the deformation of a linear object in three-
dimensional space. In detail, see [6]. In addition,
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Figure 3: Coordinates systems describing object de-
formation

we will propose a procedure to compute the allowable
maximum external force Fis. and allowable maximum
external moment Miyy..

First, we will represent the deformation of a linear
object and its potential energy. Let L be the length of
the object along its central axis and s be the distance
from one endpoint of the object along its central axis.
We will introduce the global space coordinate system
and the local object coordinate systems at individual
points on the object, as shown in Figure 3. Let O—zyz
be the coordinate system fixed on space and P — &n¢
be the coordinate system fixed on an arbitrary point
P(s) of the object. Select the direction of the local co-
ordinate system P —¢&n( so that {-axis is aligned with
the central axis of the object. Let us describe the ori-
entation of the local coordinate system with respect to
the space coordinate system by use of Eulerian angles,
#(s), 0(s), and ¥(s), and let us introduce extensional
strains at individual points P(s) on the object along
its central axis. Then, the spatial coordinates x(s)
corresponding to point P(s) and the potential energy
U can be represented by use of these four variables,
é(s), 0(s), ¥(s), and e(s). We will adopt a basic prin-
ciple that the difference between the potential energy
of a deformable object and the work done by external
force/moment reaches to its minimum under the con-
straints imposed on the object at its stable deformed
shape.

Let p, be an external force/moment and éq;
be a displacement of point P(s;) when an external
force/moment is imposed on the object at that point.
Then, work W, done by the external force/moment
P, can be described as follows:

Wiy =py, - bqy (6)

The displacement 8q;, can be also represented by use
of the four variable, ¢(s), 6(s), ¥(s), and £(s).

Next, we will derive the geometric constraints im-
posed on the object. Constraints with respect to the
position and the orientation of the object can be de-



scribed by the following equations and inequalities:

g:(®) <0, i=1,--- u (7)
@ =0, =1

These equations and inequalities are functions of ¢(s),
0(s), ¥(s), and ¢(s) as well because the spatial coor-
dinate @ is a function of these four variables.

From the above discussion, the shape of a deformed
linear object 1s derived by minimizing the energy
U — > W; under the equational and the inequality
conditions given by eqs.(7) and (8).

4.2 Procedure to Compute Deformed
Shape

As mentioned in the previous section, the shape
of a deformed linear object i1s derived by minimizing
the difference between potential energy and work done
by external force and moment under geometric con-
straints. Thus, computation of the deformed shape of
a linear object results in a variational problem. In this
section, we will propose a procedure to compute the
allowable maximum external force Fi;. and the allow-
able maximum external moment Myps.. Let us express
functions ¢(s), 6(s), ¥(s), and £(s) by linear combi-
nations of basic functions e1(s) through e;(s). Let «
be a vector consisting of coefficients corresponding to
functions ¢(s), 8(s), ¢(s), and £(s). The potential en-
ergy, the work given by eq.(6), and the geometric con-
straints given by eqs.(7) and (8) are then functions
with respect to vector «. Therefore, the deformed
shape of a linear object can be derived by computing
vector ««. Namely, computation of the shape of the
deformed object results in the minimization problem
as follows:

minimize U(a) — Zpk ~bqp (@)
k
hi(a) =0,

subject to
j = 1a' Y

Next, we convert the above minimization problem
with constraints into the minimization problem with-
out constraints by applying multiplier method[7]. The
augmented objective function is then described as fol-
lows:

Lt,r(aa)‘a l"’) = U(OL) o Zpk ' (qu(a)
> % [max{0, A +tigi(c)}* = ()] (¢
# 3 [ty + 1 st ]

where A; and p; are Kuhn-Tucker multipliers, and #;
and r; are parameters for multiplier method. By min-
imizing this augmented objective function by use of an
optimization algorithm such as quasi-Newton method,
we can compute the shape of a deformed linear object
numerically.

In eq.(10), U () has the dimension of energy while
gi(a) and hj(a) have the dimension of distance and
that of angle, respectively. So, it turns out that Kuhn-
Tucker multipliers must have the dimension of force
and that of moment, respectively. This implies that
we can derive the force and the moment imposed on
the object by solving this minimization problem. Re-
action force and reaction moment due to geometric
constraints g;(a) and h;(a) are given by the prod-
uct of Kuhn-Tucker multipliers and the negative gra-
dients of the constraints, that is |, —A;Vg;(a) and
—u; Vhj(a), respectively[7]. From the above proce-
dure, we can compute the deformed shape of a lin-
ear object and reaction wrenches acting on the object
once a certain external wrench is specified. Therefore,
we can derive allowable maximum external force Fig.
and allowable maximum external moment Myps. by ex-
amining whether the bounded force closure condition
given by eqs.(2) and (3) is satisfied or not at individual
deformations.

5 Numerical Examples

In this section, we will demonstrate the effective-
ness of our proposed approach with some numerical
examples. In the first example, we will examine the
relationship between inequality conditions and reac-
tion forces. In the second example, we will compute
the allowable maximum external force and moment
to evaluate the stability of deformable object grasp-
ing. The following set of basic functions e (s) through
e10(s) are used in the computation of these examples:

er(s) =1, ea(s)=s,
. 2nws
€ant1(s) = sin T
2nws

(n=1,2,34)

€ant2(s) = cos

If a wrench is imposed on the object at point
P(8cx), the distributed wrench along the central axis
of the object changes discontinuously at this point.
Thus, we will describe coefficient vector av as follows:

a = { Keft (5 < Sex)

Qright (5 E Sex)

Note that the following equations must be satisfied at
§ = Sex:

[¢a 6; ’l/)a E]T(aleft):[¢a 6; ’l/)a E]T(aright)~

Using the above equations, we will compute the de-
formed shape of a linear object and reaction forces
imposed on it.

5.1 Inequality Conditions and Reaction
Forces

The first example examines the relationship be-

tween inequality conditions and reaction forces. In

this example, we assume that a linear object deforms

along z — z plane and the potential energy consists

of flexural energy alone. Assume that the geometric
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Figure 4: 2D-deformation of a linear object corre-
sponding to inequality conditions
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Figure 5: 2D-deformation of a linear object imposed
an external force and moment

constraints imposed on the object are given by the
following inequalities as illustrated in Figure 4.

g1(a) = z(L) +=(L) — 0.8L <0, (11)
ga(a) = 22(L) —x(L) — 1.6L < 0. (12)

Let Ry and R, be reaction forces due to surfaces rep-
resented as gi(a) = 0, and ga(a) = 0, respectively.
We find that R, and R5 are then computed as fol-
lows:

Ri=-MVg(a)
R2 = —/\Qng(a)

=[-367TR;/L, —3.67R;/L]"
=[-7.33R;/L, 3.66R;/L]*
where R; is the flexural rigidity. Resultant force
is then represented as Ry + Ry, = [ —11.0R;/L,
—0.01R;/L Y. Furthermore, it is found that the co-
ordinates of the right endpoint of the object are equal
to [0, 0.8L]T from the computation. Let us assume
that geometric constraints which the right endpoint is

equal to [0, 0.8L]" are imposed on the object. That
18, the following equational constraints are imposed:

hi(a) = z(L)—0.8L =0, (13)
ho(e) = 2(L) = 0. (14)

Then, it is found that the reaction force R in the above
case 1s equal to the resultant force Ry + R5. Therefore,
by use of our proposed procedure, reaction wrenches
can be computed when the geometric constraints im-
posed on the object are represented as both equational
and inequality conditions.

5.2 Allowable Maximum External Force
and Moment

The second example shows the evaluation of the
stability in deformable object grasping. Let us as-
sume that the linear object deforms along z — & plane
and its potential energy U consists of flexural energy
Unex alone as well as the first example. The geomet-
ric constraints illustrated in Figure 5 are described as
follows:

6(0) = 6(L) =0 (15)
z(L)=0 (16)
2(L)—=1<0 (17)
—x(s) <0, Vs [0, L] (18)

FEq.(15) means that any moment cannot be exerted at
both end points. Eqs.(16) and (17) describe that the
right end point can move along z-axis. Eq.(18) shows
that an arbitrary point of the object must not interfere
with the table, which is defined by z < 0.

Let us exert an external force at a point correspond-
ing to sey = 0.5L in the direction of 37/4 from the
horizon. The deformed shapes are plotted in Figure
6-(a). From this figure, we find that the contact at the
right endpoint is lost when the magnitude f exceeds
0.14R¢ /L. This shows that the maximum magnitude
F in this case is equal to 0.14R;/L.

Let us exert an external moment around the y-axis
at a point corresponding to s.y = 0.5L. The deformed
shapes are plotted in Figure 6-(b). From this figure,
we find that the contact at the right endpoint is lost
when the magnitude m exceeds 0.17R;. This shows
that the maximum magnitude M in this case is equal

to 0.17R;.

Allowable maximum external force As men-
tioned above, we can compute the maximum magni-
tude of external force and moment acting on a certain
point of the object along a certain direction. First,
we assume that the right end point of a linear object
doesn’t slip, namely, (L) = 0. Next, we compute re-
action forces Fy, and F, at the end point. If F,./F, is
larger than the friction coefficient u between the ob-
ject and a finger, that point can slip actually. There-
fore, the magnitude of external force/moment is max-
imum for stable grasping when reaction forces satisfy
F./F. = p. Computing the maximum magnitude cor-
responding to various acting point and direction, we
can derive the allowable maximum external force Fif.
and the allowable maximum external moment Myp;..

Figure 7 shows the relationship between the fric-
tion coefficient ¢ and the allowable maximum external
force Fipte.. Upper bounds of forces have been com-
puted for sex = 0.lal (¢ = 1,2,---,9) and 6, =
+(4+b)7/8(b =0,1,---,4). From this figure, it is
found that Fi;. becomes larger when p becomes larger
or the distance between two end points of the object
becomes smaller.

Allowable maximum external moment Figure 8
shows the relationship between the friction coefficient
1 and the allowable maximum external moment M.
Upper bounds of moments have been computed for
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Figure 6: Deformed shapes caused by external force
and moment

Sex = 0.1aL (¢ = 1,2,---,9). From this figure, it is
also found that Mys. becomes larger when p becomes
larger or the distance between two end points of the
object becomes smaller.

From the above computation, it can be shown that
the stability of grasping of a linear object depends
upon the friction between the object and the fingers
as well as the distance between the two endpoints.

6 Concluding Remarks

In this paper, we analyzed stable grasping of de-
formable objects based on the concept of bounded
force closure. Firstly, we introduced the concept of
bounded force closure, which 1s an extension of force
closure. It was found that the allowable external force
and moment was upper bounded in the grasping of de-
formable objects. Secondly, we investigated the neces-
sary condition for bounded force closure and derived
the properties of bounded force closure grasping. We
found that anecessary condition for bounded force clo-
sure was given by a condition that the negative of the
body force was involved in the interior set of reaction
forces. Thirdly, we formulated the deformation of lin-
ear objects as an example of deformable objects. We
proposed a procedure to evaluate stability in deforma-
ble object grasping. Finally, some numerical examples
were shown in order to demonstrate the effectiveness
of our proposed method. It was shown that the stabil-
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Figure 7: Allowable maximum external force
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Figure 8: Allowable maximum external moment

ity of deformable object grasping depended upon the
friction and the shape at the grasping.
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