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Abstract turing of electrical apparatuses and automobiles, and medi-
cal threads are used in surgery. Linear objects are defined as
We describe the modeling of linear object deformation based ondif-  objects that are much larger along one of the orthogonal di-
ferential geometry and itsapplicationsto manipulativeoperations. A rections than along the other two. Modeling of linear object
particle-based approach, thefiniteelement method, andthe Cosserat  deformation is required for many purposes, including plan-
theory have been applied to the modeling of linear object deforma-  ning of manipulative operations and design of products.
tion. In this paper, we establish an alternative modeling approach In this paper, we describe the modeling of linear object de-
based on an extension of differential geometry. First, we extend dif-  formation based on differential geometry and its applications
ferential geometry to describe linear object deformation including  to manipulative operations. Much research has been done on
flexure, torsion, and extension. Secondly, we show computational  the modeling of linear object deformation; a particle-based
resultsto demonstrate the feasibility of the proposed modeling tech-  approach, the finite element method (FEM), and the Cosserat
nique, and we compare computational and experimental resultsto  theory have been applied to the modeling. We establish an
demonstrate the accuracy of the model. Next, we apply theproposed  alternative modeling approach based on an extension of dif-
approach to the grasping of a deformable linear object. Wepropose  ferential geometry. First, we extend differential geometry to
a disturbance force margin to indicate the stability of the grasping  describe linear object deformation including flexure, torsion,
and we describe the computation of the margin using the proposed ~ and extension. This follows on from a method that we pre-
approach. Finally, we apply the proposed approach to the deforma-  viously proposed for describing linear object deformation in-
tion path planning of alinear object. We formulatethe minimization  tuitively (Wakamatsu, Hirai, and Iwata 1995; Hirai 2000).
of potential energy during a deformation path. We compute theop-  Here, we will focus on a mathematical description based on
timal deformation path and a feasible deformation path, which are  differential geometry. Secondly, we show computational re-
compared with an experimental result. sults to demonstrate the feasibility of the proposed model-
ing method. Since planning of manipulative operations and
design of products require that the model be accurate, we
compare computational and experimental results to demon-
. strate the accuracy. Next, we apply the proposed approach
1. Introduction to manipulative operations of deformable linear objects, i.e.,

Many manipulative operations deal with deformable linegd@SPing and deformation path planning. We propose a dis-
objects such as wires, cords, and threads with flexural, tgfrPance force margin to indicate the stability of the grasping
sional, and extensional deformations in three-dimensiond'd describe the computation of the margin using the pro-
(3D) space. For example, electrical and optical cables are nf25€d approach. In deformation path planning, we compute

nipulated in the building and maintenance of communicatioft€ ©Ptimal deformation path and a feasible deformation path
systems, wires and cables are manipulated in the manuf4§ing the proposed approach.

KEY WORDS—deformation, modeling, linear objects, stat
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mechanics basically focuses on the local deformation of solell as sutures in surgery (Kihnapfel, Cakmak, and Maass
bodies rather than the global deformation of objects. Mode2000). Linear objects have been approximated using beams
ing of global object deformation has been extensively studh the engineering community; models exist to describe small
ied in computer graphics and virtual reality. Elasticity thedeflection of beams (Timoshenko 1955), and also large defor-
ory has been applied to physically based modeling of deaation using nonlinear beam finite elements (Belytschko, Liu,
formable objects (Terzopoulos et al. 1987; Terzopoulos armthd Moran 2000). Recently, fast algorithms have been intro-
Witkin 1988). The introduction of the FEM has extended thesguced to describe linear object deformation using the Cosserat
studies. Geometrically-nonlinear FEM has been applied to thigrmulation (Pai 2002). Cosserat elements possess six degrees
modeling of global deformation with real-time haptic renderef freedom: three for translational displacement and three for
ing (Zhuang and Canny 2000). Rotation-invariant nonlineaotational displacement. Flexure, torsion, and extension of a
FEM has been applied to the modeling of anisotropic sofinear object can be described by use of Cosserat elements.
tissues for real-time simulation (Picinbono, Delingette, and Mathematical descriptions of linear objects have been stud-
Ayache 2001). Space and time adaptive sampling of mulfied in knot theory and differential geometry. Knot theory pro-
resolution hierarchy of tetrahedral meshes with large Greeides a topological classification and description of knots of a
strain formulation has allowed real-time simulation of globathread (Adams 1994). Language has been designed to describe
object deformation (Debunne et al. 2001). The boundary ehe transitions among knot topologies during the manipulation
ement method (BEM) has been introduced to the modeliraf a thread (Hopcroft, Kearney, and Krafft 1991). In differ-
of deformable objects (James and Pai 1999, 2002). The BEdhtial geometry, curved lines in two-dimensional (2D) or 3D
approach is applicable to only uniform objects, but can respace have been studied to describe their shapes mathemati-
duce the computation time, resulting in real-time simulationally (Gray 1993). Differential geometry can describe flexure
of global object deformation. In the particle-based approachf a linear object, but not extension along or torsion around
a deformable object is represented by a set of particles cahe object.
nected by mechanical elements (Witkin and Welch 1990), and Manipulation of deformable objects has been studied in
the penalty method has been proposed to describe the collisiobotics (Taylor 1990; Henrich and Wérn 2000). Insertion of
among objects (Joukhader, Deguet, and Laugie 1998).  a wire into a hole has been analyzed using a beam model
The high aspect ratio of thin objects, such as paper awd the wire to derive a strategy to perform the insertion suc-
cloth, and linear objects, such as wire and thread, often causessfully (Zheng, Pei, and Chen 1991; Nakagaki et al. 1997).
instability in the computation of deformed shapes. Thus, va¥ibration-free handling of a beam has been investigated using
ious modeling techniques have been adapted for thin or lin-beam dynamic model (Chen and Zheng 1995). Sensor-based
ear objects. For example, the deformed shape of a thredghamic insertion of a wire has been investigated (Yue and
suspended by two points has been analyzed using calculenrich 2002). A distributed compliance model has been pro-
of variations and it has been found that the shape can pesed to describe the assembly of deformable parts (Villarreal
described by a catenary (Irvine 1981). The deformation @nd Asada 1991). A particle-based model of fabric has been
clothes has been described using catenaries (Weil 1986).dpplied to control the fabric positioning operation (Hirai and
these approaches, the material properties are not consideMfda 2000). Inverse problems in the manipulation of a linear
only the mass is considered. Nonlinear shell theory has beebject have been solved using an object model computed in
applied to the modeling of fabric deformation (Eischen, Dengparallel on a cluster system (Remde and Henrich 2000).
and Clapp 1996). A particle-based model of cloth has been Much research has focused on the modeling of linear
proposed for drape simulation (Eberhardt, Weber, and Strasdject deformation. The particle-based approach, the FEM,
wer 1996). Implicit numerical integration has been introduceand the Cosserat theory have been employed. In this paper,
to the particle-based cloth model to reduce computation tinvge establish an alternative modeling based on an extension of
(Baraff and Witkin 1998). Knot tying of a thread has been sindifferential geometry. Mathematical description of a curved
ulated using a particle-based model of the thread (Phillipbne in 3D space has been studied in differential geometry. It
Ladd, and Kavraki 2002). The deformed shape of threadswell known that, in differential geometry, any curved line
in a fabric has been described geometrically (Leaf 1960). kan be specified uniquely by two functions, which implies
computer graphics, the particle-based approach has beenthat flexure of a linear object can be expressed by these two
plied to simulate the motion of hairs. Flexure and extension ddinctions. However, extension along and torsion around the
hairs have been described in Rosenblum, Carlson, and Tripprved line cannot be described in differential geometry since
(1991), while flexure and torsion of hairs have been describditese deformations cannot be determined uniquely for any one
in Daldegan et al. (1993), implying that flexure, torsion, andurved line. Two additional functions need to be introduced to
extension of a linear object can be described using a partickexpress the extension and torsion of a linear object. Thus, at
based approach. Deformation of a linear object can be madéast four functions are required to describe linear object de-
eled using beam elements in the FEM. Spline-based modelifgmation, i.e., flexure, torsion, and extension. The proposed
has been applied to the real-time simulation of soft tissues amethod describes linear object deformation by four functions.
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We often have to manipulate cables or wires composed of 3
several materials. Our model is applicable to the modeling of T Z
these objects since flexure, torsion, and extension of the lin- ) ? )
ear object are formulated independently. Thus, we can iden- X P n
tify deformation parameters independently and can construct z S >
the object model easily. The particle-based approach is als® < L
applicable but it requires many more parameters to describe
the deformation. Our model is continuous so that deformation (8) Natural state
can be described by relatively few parameters. These proper-
ties are conducive to the planning of manipulative operations
of deformable linear objects. Thus, we apply the proposed
approach.

\
Y

2. Description of Linear Object Deformation
Based on Differential Geometry (b) Deformed state

2.1. Differential Geometry Coordinates Fig. 1. Coordinate systems describing object deformation.

In this section, we formulate the deformation of a linear ob-
ject in 3D space. As described by Frenet—Serret formulae in

differential geometry, any curve in 3D space can be specifiedf cos# 0 sing cosy —sny O
by the Frenet frame field (Gray 1993). However, extension 0 1 0 sny cosy O
along a linear object and torsion around its central axis can-| —sind 0 cosé 0 0 1

not be described in the Frenet frame field. Instead, we specify o
the relationship between two frame fields defined in natural Cos® cos¢ cosy —singsiny
and deformed states of a linear object. lebe the length = | CO0SOSIN¢ COSYr + CoOSp SNy
of the object and let be the distance from one end point of —sing cosyr

the object along its central axis. Le{s® be the point on the
object at distance. In order to describe the deformation of a
linear object, the global space coordinate system and the local
object coordinate systems at individual points on the object

are introduced as shown in Figure 1. LetOryz be the co-  Note that the Eulerian angles depend on distance s. Let €, n,
ordinate system fixed in space ane-Bn¢ be the coordinate and¢ beunit vectorsalongtheé-, -, and ¢ -axes, respectively,
system fixed at an arbitrary point$ on the object. Assume at point P(s). These unit vectors are given by thefirst, second,

that the object is straight along theaxis in its natural state andthird columnsof therotation matrix, respectively. Namely,
whereby the object has no deformation. Select the direction of

coordinates so that thfe, n-, andz -axes are parallel to the, A, 0, 9) = [ § | n | ¢ ]

y-, andz-axes, respectively, in the natural state. Deformation

of the object is then represented by the relationship betwe@i2. Flexure, Torsion, and Extension of Linear Object

the local coordinate systemZ n¢ at each point on the object

and the global coordinate system-Ocyz. This is referred to . ) . )
. . ) . itstorsional anglein order to expressflexural andtorsional de-
as differential geometry coordinate representation. ) : S
g ) . . formations of the object. Let w;, w,, and w, be infinitesimal
Let us describe the orientation of the local coordinate sys- . .
. . ratios of rotation angles around the &-, n-, and ¢-axes, re-
tem with respect to the space coordinate system by use 0

. : ectively, at point P(s) to distance s. Since &, n, and ¢ are
Eulerian angless (s), 6 (s), andyr (s). The rotational transfor- P . . . L
mation from the coordinate system-Fn¢ to the coordinate orthonormal vectors, theratios satisfy the following equation:

—cosfsingsiny + cos¢ cosyr | sinfsing

—C0SH Cos¢ Siny — Sing CosSYy | Sinf cos¢
- (D
singsiny coso

L et usdescribethe curvature of adeformablelinear object and

system O— xyz will be expressed by the following rotation dg | dn | d¢
matrix: %%l :[g|,7|;]
cosp —sing O 0 —8): @y
A(¢,0,%)=| sing cosp O w, —w;

0 0 1 —w, s 0
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From this equation, we have

0 —w; W,
; 0 —ws =
—y We 0

Note that the above equation is similar to the relationship be-
tween the angular vel ocity vector and rotation matrix inrigid-
body motion. By substituting eg. (1) into the above equation,
theinfinitesimal angle ratios can be described as follows:

s —sing cosyr d siny do
w, | = sin@siny @ + | cosy &
w; cosf $ 0 $

0
J{o}d—‘”.
1 ds

Let x and w be the curvature and the torsional angle at point
P(s), respectively. The curvature and torsional angle can then
be described using infinitesimal angle ratios as follows:

o (), (9 g
+w”_<ds> +<ds) sn“6, (3

do dy\*
2 2 __ - -r
o =w; = <ds cosf + ds) . 4

JRLY

T )

K2=(,()

N

Notethat thecurvaturex and thetorsional anglew both depend
on distance s. It should be emphasized that, using eg. (2),
we can compute infinitesimal ratios w;, w,, and w, for any
expression of rotation matrix A. Thisimplies that the above
derivation is general and that we can derive the curvature «
and the torsional angle w for any expression of the rotation
matrix.

In order to express the extensional deformation of alinear
object, a strain at each point P(s) will be introduced. Let ¢
be extensional strain at point P(s) on alinear object along its
central axis. It turns out that the unit vector along the ¢ -axisat
the natural state can be transformed into the following vector
due to the object deformation:

sing cos¢
1+e)¢(s)=A+¢)| snfsing |. (5)
cosé

Let x(s) = [ x(s), y(s), z(s) ]" be the position vector of
point P(s). Theposition vector can becomputed by integrating
vector (1 + ¢€) £ (s). Namely,

x(s) =x0+ /(1+8);‘(s) ds, (6)
0

where xo = [ x0, yo, 20 1" is the position vector at the end
point P(0).

From the above discussion, it is found that the geomet-
rical shape of a deformed linear object can be represented
by four functions, namely, Eulerian angles ¢, 6, and v, and
extensional strain ¢. Note that each function depends upon
parameter s.

3. StaticM odeling of Linear Object Defor mation

In this paper, the variational principlein statics are applied to
the modeling of linear object deformation. According to this
principle, under theimposed constraints, theinternal energy of
alinear object attainsitsminimumvalueinitsstable deformed
state. Dynamical effects during operations are assumed to be
negligible.

3.1. Internal Energy of Linear Object

Let us formulate the potential energy of a deformed linear
object and the work done by external forces to express the
internal energy of the object. First, the potential energy of a
linear object will be formulated. Assume that the thickness
and the width of the object are negligible. Applying the as-
sumption of Bernoulli and Navier, it turnsout that the potential
energy U can be described as follows

U = Uflex + Utur + Uexr + Ugmv (7)

where Uy, U,,,, and U,,, represent the flexural, torsional,
and extensional energy of the object, respectively, and U,,,,
denotes its gravitational energy.

The object’s total flexural energy Uy, and total torsional
energy U,,, can becomputed by integrating, respectively, flex-
ural energy and torsional energy at point P(s) over the object.
Assuming that theflexural energy and thetorsional energy are
proportional to the bending moment and twisting moment at
each point P(s), respectively, the energies can be described as
follows

L

1
U frex E/Rf/cz ds, (8)
0
L
1 2
Utur = E/Rtw ds (9)

0

where R, and R, represent the flexural and torsional rigidity
at point P(s), respectively. Notethat R, and R, may vary with
respect to distance s. Assuming that the extensional energy
is proportional to the extensional strain at each point P(s),
extensional energy U.,, is given by

L

1
Uex, = E / ReSZ ds

0

(10)



where R, denotesthe extensional rigidity of the object, which
may depend on distance s. Assuming that gravity forces act
along the x-axis, the gravitational energy is given by

L

Ugrar = / Dx ds

0

(11)

where D represents weight per unit length of the object. The
quantity D may also vary with distance s.

Let p;, be an external force applied to a linear object at
point P(s;) and let 3q; be the resultant displacement of that
point. Then, work W; done by the external force p; can be
described asfollows:

W, = p;-dq;. (12)

Note that displacement §q; can be represented by four vari-
ables: ¢ (s), 6(s), ¥(s), and g(s).

From the above discussion, the internal energy V can be
described as follows:

V=U—Zm.

Thus, the internal energy can aso be represented in terms of
the four variables, ¢ (s), 0(s), ¥ (s), and g(s).

(13)

3.2. Geometric Constraints

The interaction between the linear object and other objects
such as fingertips or obstacles imposes geometric constraints
on the linear object. Let us formulate these geometric con-
straints. The relative position between two points on the ob-
ject is often controlled during a manipulative operation of the
object. Consider aconstraint that specifiesthe positional rela
tionship between two pointsontheobject. Letl = [I,, I,, .]"
be a predetermined vector describing the relative position be-
tween two operational points, P(s,) and P(s,). Recall that the
spatia coordinates corresponding to distance s are given by
€g. (6). Thus, the following equation must be satisfied:

x(s,) —x(s,) =1. (14)

The orientation at one point on the object is often controlled
during an operation as well. This constraint is simply de-
scribed as follows

A(P(s.), 0(sc), Y (se)) = A(@e, O, W),

where ¢., 6., and . are predefined Eulerian angles at one
operational point P(s,).

Contact between alinear object and rigid obstaclesin oper-
ation space also yields other geometric constraints. Note that
any point on the object must be located on or outside each
obstacle. Let us describe the surface of an obstacle fixed in
space by function f(x) = 0. Assume that the value of the

(15
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function is positive inside the obstacle and negative outside
it. The condition that alinear object is not interfered with by
this obstacle is then described as follows

fx(s)) =0, Vsel0 L], (16)

wherex (s) isdescribed in eg. (6). Notethat the condition that
an object is not interfered with by obstacles is described by
a set of inequalities since mechanical contacts between the
objects constrain the motion of the object unidirectionally.

Furthermore, self-interaction of alinear object should be
considered. Assume that the cross-section of alinear object
iscircular. Let r(s) betheradius of the cross-section at point
P(s). Then, in order to avoid interference with itself, alinear
object must satisfy the following condition:

x(s:) —x(s;))| = r(s) +r(s)),
Vsi,s; € [0,L], st |s;—s;

> r(s;) +r(s;). 1

From the above discussion, it is found that the geometric
constraints imposed on a linear object are given by not only
equational constraints such as egs. (14) and (15) but also in-
equality constraints such as egs. (16) and (17). The deformed
shape of the object is, therefore, determined by minimizing
the internal energy described in eq. (13) under these geomet-
ric constraints imposed on the object. Namely, computation
of the deformed shape of an object results in a variational
problem under equational and inequality constraints.

4. Computation of Linear Object Defor mation

4.1. Computation Algorithm

Computation of the deformed shape of alinear object results
inavariational problem as mentioned in the previous section.
One method to solve a variational problem is the Euler ap-
proach, which is based on the stationary conditionin function
space. Recall that the geometric constraints resulting from
mechanical contacts are unidirectional and mathematically
describable by inequalities such as egs. (16) and (17). These
conditions are nonholonomic constraints (Goldstein 1980).
Thus, the shape of an object that minimizes internal energy
does not necessarily satisfy the stationary condition. Thisim-
pliesthat the Euler approach, which isbased on the stationary
condition, is not applicable.

In this paper, we develop an algorithm based on the Ritz
method (Elsgolc 1961) and a nonlinear programming tech-
nique. Let us expressfunctions ¢ (s), 6(s), ¥ (s), and (s) by
linear combinations of basic functions e, (s)—e, (s):

> alei(s) Za’ - e(s)

i=1

d(s) =

n

Z afe,v(s) 2a. e(s),

i=1

0(s) =
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Y (s)

> ales) =a’ -e(s),
i=1
Zafei(s) La -e(s).

i=1

e(s) =

Here a?,a’,a?, anda® are vectors consisting of coefficients
corresponding tofunctions¢ (s), 0 (s), ¥ (s), and e (s), respec-
tively, and vector e(s) is composed of basic functions e (s)—
e, (s). Substituting the above equationsinto eg. (13), interna
energy V isdescribed by afunction of coefficient vectorsa?,
a’, a’, and a°. The geometric constraints are also described
by conditions involving the coefficient vectors. In addition,
discretizing egs. (16) and (17) by dividing interval [0, L] into
N small intervals yields a finite number of conditions. As a
result, aset of the geometric constraintsis expressed by equa-
tions and inequalities in terms of the coefficient vectors.

Consequently, the deformed shape of a linear object can
be derived by computing a set of coefficient vectors a?, a?,
a’, and a¢ that minimizes the internal energy under the geo-
metric constraints. Thisminimization problem under equality
and inequality constraints can be solved by the use of anon-
linear programming technique such as the multiplier method
(Avriel 1976). In this method, a minimization problem under
geometric constraintsis converted into an unconditional min-
imization problem with Lagrange multipliers. The Lagrange
multipliers denote the components of reaction forces corre-
spondingtoindividual geometric constraints. The shape of the
deformed object corresponding to a set of coefficient vectors
can be computed by eg. (6).

4.2. Examples of Computation

In this section, numerical examples demonstrate how the pro-
posed method computesthe deformed shape of alinear object.
Thefirst example shows the transition between topologically
different shapes of alinear object considering its flexural and
torsional deformations. The second example demonstratesthe
effect of theextensional rigidity of alinear object onitsshapes.
The third example shows the shape of a linear object under
gravity. The following set of basic functions are used in the
computation of these examples:

e =1, ey =15,
. 2mis
€41 = SN T

2mis

€42 = COST,

(i=1234).

Assume that the length of the object L is egual to 100 in
the following examples. We apply the multiplier method and
the BFGS formula in the quasi-Newton method to the non-
linear optimization. The multiplier method converts a mini-
mization problem with geometric constraints into an uncon-
ditional minimization problem. The BFGSformulasolvesthe
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Fig. 2. Computational result of topological shape transition.

converted unconditional minimization problem. All optimiza-
tions start from the natural state of a linear object. All the
following computations were performed on a 833 MHz Al-
pha21264 CPU with 1 GB memory operated by Tru64UNIX.
Programswere compiled by aCompag C Compiler V6.4 with
optimization option -O4.

4.3. Object Deformation Considering Flexure and Torsion

The first example demonstrates the deformation of a linear
object with flexure and torsion. The potential energy of the
object is assumed to be given by the sum of the flexural and
torsional energies of the object: U = Uy, + U,,.. On nor-
malizing the potential energy and the geometric constraints
by dividing variable s by length L, it is found that the shape
of the object is determined by the following dimensionless
quantity:

R,
o= R,
Suppose that p, = 0.77. Let us align the central axis at both
end points of alinear object in the initia state. Then, let us
move one end point along this axis in order to shorten the
distance between the two end points specified by . Computed
shapes of alinear object of length L are shown in Figure 2.
Valuesof thedistance! corresponding to the computed shapes
are 0.6L, 0.5L, 0.4L, 0.3L, 0.2L, and 0.1L. The shape of
a linear object changes from a knot-free shape into a one-
knot shape while the distance between the two end points
decreases, as shown in the figure. In a one-knot shape, the
object has not only flexural deformation but aso torsional
deformation. Computation times are listed in Table 1. CPU
time increases as length [ decreases since optimization starts
from the natural state of the linear object.

Figure 3 shows the computed flexural energy U ., and the
torsional energy U,,.. We have also plotted the flexural energy
of alinear object with flexural deformation aone:U = Uy, .
This figure shows that the sum of the flexural and torsional
energiesis smaller than the flexural energy without torsional



Table 1. Timeto Compute Topologically Different Shapes
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l 0.6L 0.5L 0.4L 0.3L 0.2L 0.1L
CPU time (s) 17.6 23.1 26.5 355 38.6 38,5
Withlout torsi olnal deforrlnation
5 4 oI /
: — |
30
o}
2 — 1
s 20 bending energy-
g |
= 10
o .
0 torsional energy
1

0.6 0.5 0.4 0.3 0.2
ratio of distance to object length : | /L

0.1

Fig. 3. Potentia energy in topological shape transition.

deformation when the ratio I /L is below a boundary value,
0.3 in this example. The deformed shape transits between a
knot-free shape and a one-knot shape at the boundary value.
We also found that the boundary value, which can be deter-
mined through the above computation, depends on p,. As a
result, a linear object changes from a knot-free shape into
a one-knot shape as the ratio //L drops below a boundary
value, which depends on the flexural and torsional rigidities.
As demonstrated here, our proposed approach can simulate
this topological shape transition.

Kinking, or torsional buckling, is a well-known phe-
nomenon in linear object deformation including flexure and
torsion. Our proposed approach is capable of simulating this
phenomenon. Figure 4 shows the result of computed kinking.
Let usfirst twist alinear object, i.e., fix one end point of the
object and rotate the other around its central axis. Then, let us
reduce the distance between the two end points. Let w, bethe
twisting angle. Theleft two shapesin the figure correspond to
the twisting phase at w, = 27 and 4. The other four shapes
in the figure correspond to the reducing phase at / = 0.8L,
0.6L, 0.4L, and 0.2L. A knot is formed in the object at any
value of distance/, as shown inthefigure. Recall that alinear
object hasnoknotswhen!/ L exceeds0.3withoutinitial twist-
ing. This example demonstrates how aknot is generated with
the initial twisting. Computation times are listed in Table 2.
CPU timeincreases with twisting angle w, since optimization
starts from the natural state of alinear object. Figure 5 shows
the flexural and torsional energies during a kinking process.
Twisting of alinear object increases the energy of the object
and reducing the distance between the end points decreases
the energy, as shown in the figure.

Fig. 4. Computational result of kinking.

80
\
D \
2 60
g torsional energy >~ |
& 40
®
'-.:l /—\
g 20
2 bending energy
0 ! |
21 3n 410 08 0.6 0.4 0.2

torsional angle: w, ratio of distance

toobject length : I /L

Fig. 5. Potentia energy in kinking.

4.4, Effect of Object Extension

The second example demonstrates the computation of the ob-
ject shape considering the extensional energy. The potential
energy of alinear object is given by the sum of its flexural
and extensional energies: U = Uy, + U.,,,. On normalizing
asinthefirst example, it isfound that the shape of the object
is determined by the following dimensionless quantity:
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Table 2. Timeto Compute Deformation in Kinking

N 27 3 A [ 0.8L 0.6L 0.4L 0.2L
CPU time (s) 8.5 17.2 29.6 CPU time (s) 305 32.6 30.0 35.0
0.4 —— thiscomputation. The computed shapesareshownin Figure7.
o x Asshown inthefigure, the height of the object decreaseswith
03 # o increasing p,. In addition, the shape is no longer symmetric
W when p, exceeds 100. Note that we have two possible shapes
7 e that are mirror images about the central vertical line. One of
02 ¢ the shapes is illustrated in the figure. In order to verify that

x/L

0.1
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Fig. 6. Example of computed object shapes considering
extension.

Quantity p, represents the contribution of the extensional en-
ergy to the shape of alinear object. The extension is small
when the quantity p, islargeand itisnil a p, = oco. Let us
compute the deformed shapes of alinear object at p, = oo,
500, 300, 200, and 100. The distance between the end points
along the z-axisis set to 0.6L in this computation. The com-
puted shapes are shown in Figure 6. Note that the length of
the object is less than the origina length L. The height and
length of the object decrease with decreasing p,, as shown
in thefigure. Extensional deformation without flexural defor-
mation occurs when parameter p, islessthan 100.

4.5, Effect of Gravity

Thethird example demonstrates the computation of the object
shape considering the gravitational energy. The potential en-
ergy of alinear object is then given by the sum of its flexural
and gravitational energies: U = Uy, +U,,,,- Onnormalizing
asinthefirst example, it isfound that the shape of the object
is determined by the following dimensionless quantity:

= b L3

Ry

Pg

Quantity p, represents the contribution of the gravitational
energy to the shape of alinear object. The gravitational effect
isnegligibleat p, = 0. Let uscomputethe deformed shapesof
alinear object at p, = 0, 100, 150, 200, and 400. Thedistance
between theend pointsalong the z-axisistaken to be 0.85L in

the asymmetric shape minimizes the potential energy, let us
compute the potential energy of the object assuming that the
deformed shape is symmetric. The potential energy U is, for
example, equal to 0.255 assuming that the deformed shape
is symmetric while the minimum value of potential energy
is equal to 0.254 at p, = 200 resulting from R, = 1, D =
2x 1074, and L = 100. That is, the symmetric shape does not
satisfy the conditionthat the potential energy isat itsminimum
in astable deformed shape. Thisimpliesthat deformed shapes
are asymmetric when the dimensionless quantity p, exceeds
acertain vaue.

5. Experimental Verification

5.1. Two-Dimensional Shape Measurement

In this section, the computation resultswill be experimentally
verified by measuring the deformed shape of alinear object.
Let us measure the 2D deformation of two types of paper
sheets as shown in Figure 8. Oneis arectangle 30 mm wide,
and the other is atrapezoid whose upper and lower bases are
50 and 100 mm wide, respectively. Both are 200 mm long and
92 um thick. Let us evaluate the deformed shape of a paper
illustrated in Figure 8(a) along the z—x plane. The flexura
rigidity R, and the weight D per unit length of the paper are
9.8x107°N m?and 2.0 x 10-2 N m~?1, respectively. The paper
isdeformed sothat the distance betweenitsendsis180, 140, or
70 mm. Quantity p, turnsout to be equal to 1.60. Thisimplies
that the gravitational energy is negligible in the computation.
Angles6(0) and 6(L) are measured and are estimated as0.17
and O (rad), respectively. The computed and measured shapes
of thedeformed paper areshownin Figure9 assolid and dotted
lines, respectively. The difference between the computed and
experimental valuesalong the z-axisis2 mm at most. Namely,
theratio of thedifferencein paper lengthisapproximately 1%.

Next, let us evaluate the deformed shape of a paper il-
lustrated in Figure 8(b). The flexural rigidity R, and the
weight D per unit length change according to the paper
width » mm and are taken to be 3.23b x 10°* N m? and
6.86b x 10~* N m~*, respectively. Furthermore, the width b
is given by 50 + 0.25s mm. Note that our approach can be
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Fig. 8. Shape of papers used in experiment.

applied to the deformation of alinear object when its phys-
ical properties depend on variable s. Angles 6(0) and 6(L)
are estimated as 0.17 and O (rad), respectively. The computed
and measured shapes of the deformed paper areillustrated in
Figure 10. The difference between the computed and experi-
mental values along the z-axisis 2 mm at most. Namely, the
ratio of the difference in the paper length is approximately
1%.

Let us verify asymmetric deformation plotted in Figure 7.
We have measured the deformation of rectangular papers
15 mm wide and 60 pm thick. The flexural rigidity R, and
theweight D per unit length of the papersare 1.4 x 107 N m?
and 8.8 x 10~ N m~2, Thelength of the papers L istaken to
be 200, 300, and 400 mm. Then, quantity p, is correspond-
ingly given by 50, 172, and 405. The papers are deformed so
that the distance between the end pointsis 0.85L. The mea
sured shapes are plotted in Figure 11. Comparing Figures 11
and 7, we find that the computation describes the measured
asymmetric deformation well. The maximum difference be-
tween the computed and experimental valuesalong the z-axis
is7mmat L =200mm, 20 mm at L = 300 mm, and 20 mm at
L =400 mm. Thus, theratio of the differencein paper length
is approximately 4% at L = 200 mm, 7% at L = 300 mm,
and 5% at L =400 mm. The difference in the last experiment
islarger than that in the first two experiments. The deformed
shapesarealmost entirely determined by the orientationangle
at each end point and the flexural rigidity in the first two ex-

0.4

‘tSOmm 50mm I

0.5 0.6 0.7 0.8

z/IL

200mm

-4—p

100mm

y
(b) Trapezoid

periments since the gravitational energy is negligible, while,
in the last experiment, the weight per unit length playsarole
aswell. In other words, more parameters must be determined
inthelast experiment than inthefirst two. Thisiswhat causes
the larger differencein the last experiment.

5.2. Three-Dimensional Shape Measurement

In this section, we describe the measurement of 3D deforma-
tion of alinear object. We have measured the shape of ametal
wire 871 mm long. The wire's flexura rigidity R, and the
torsional rigidity R, are 6.6 x 107 N m? and 2.3 x 10™* N
m?, respectively. Weight D per unit length of the wire is
1.0 x 102 N m™1. Two manipulators control the position
and orientation of both end points of the wire. In the initial
state, one end point is rotated by wo while keeping the wire
straight. Next, the distance between the two end points /. is
decreased by controlling the motion of the two manipulators.
Then, the object is both flexed and twisted. This implies that
its shape is no longer limited to one plane. The shape of the
deformed wire is measured by two cameras. The optical axes
of the cameras intersect at one point at right angles. Let one
optical axis be the x-axis and the other axis be the y-axis.
The projections of the deformed shape onto the z—x and z—y
planes can then be directly measured by the two cameras.
Figure 12 shows the computed and measured shapes of a
deformedwireat w, = 7 (rad). Thesolid and dotted linesrep-
resent the computed and measured val ues, respectively. From
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the measured val ues, the di stances between thetwo end points
alongthex-axisand y-axis, [, and!/,, and theorientationsat the
end points, A(¢(0), 6(0), ¥ (0)) and A(¢(L), 6(L), ¥ (L)),
have been estimated. The estimated values have been used in
the computation of the deformed shapes of awire. The grav-
itational effect is assumed to be negligible. The difference
between the computed and experimental values along the x-
and y-axesis 50 mm at most. Theratio of thedifferenceinthe
wire length is approximately 6%. The difference in this 3D
experiment islarger than the differencein thefirst two 2D ex-
periments. Note that more parameters must be determined in
the 3D experiment: three orientation angles at each end point
of the wire and its torsiona rigidity. This causes the larger
differencein the 3D experiment.

6. Grasping of Deformable Linear Object

6.1. Stability of Deformable Object Grasping

In this section, we apply the proposed approach to the grasp-
ing of a deformable linear object. Force closure has been
proposed to evaluate the stability of the grasping of arigid
object (Mason 2001). The stahility isexamined by investigat-
ing whether force/moment equilibrium is kept or is broken
against an arbitrary disturbance force/moment applied to the
object. Note that a set of forces applied to a rigid object at
different points can be equivalently converted into a combi-
nation of force and moment at one representative point. This
conversion originates from the definition of arigid body: the
distance between any two points on the object is invariant.
On the other hand, the conversion cannot be performed for a
set of forces applied to a deformable object since the distance
between two points on the object may vary. Moreover, in the
grasping of arigid object, it is often assumed that each finger
can exert agrasping force involved in the friction cone at the
contacting point with infinite magnitude. This assumption is
not applicable to the grasping of a deformable linear object
since the magnitude of the grasping forces can be determined
depending on the deformed shape of the linear object.

L et usevaluatethe stability of the grasping of adeformable
linear object. The above discussion suggests that a distur-
banceforce should be applied to different points on the object
to investigate whether the grasping can be performed suc-
cessfully against the disturbance force. Note that applying a
disturbance force to a deformable linear object causes defor-
mation, which may break the contact between the object and a
finger, resulting in failure of the grasp. The breakage depends
on the magnitude of the disturbance force as well as its di-
rection and action point. We can examine if the grasping can
be performed successfully by investigating whether or not the
grasping forces are involved in their corresponding friction
CONes.

Let us formulate the above discussion on the grasping of
adeformable linear object. Assume that a deformable linear

object contactswithr fingers. Let P(s; ) bethe contacting point
between the kth finger and the object, let £, bethe contacting
force of the finger, and let FC, be the friction cone at the
contacting point. Let f and n be the magnitude and direction,
respectively, of a disturbance force applied to a point P(s,)
on the object. Let us apply a disturbance force fn at point
P(s,). Unlessthe magnitude of thedisturbanceforceexceedsa
certain upper bound, the contacts at individual fingersarekept
and all contacting forces are involved in their corresponding
friction cones. In other words, the grasping can be performed
successfully against the disturbance force whileits magnitude
is below the bound. Note that the upper bound depends on
directionn and positionx (s,,) of point P(s,). Let F(s,, n) be
the upper bound of magnitude f. If the magnitude exceeds
the bound, contact at afinger islost, resulting in failure of the
grasp. Let F,,,, bethe smallest value of F(s,, n):

Fowp = rrslin min F(s,,n).
Note that the grasping can be performed successfully unless
the magnitude of adisturbance force exceeds F,,,;,, regardless
of the direction of the force and its action point. That is,

Vf el0, Fusl, Vr st |n| =1,

Vs, st. 0<s, <L,

Af, e FCy, .-+, fr € FC,, st

alinear object is stable against external force fn
applied to the object at x (s,).

Thevalueof F,,,,, whichisreferred to asthe disturbanceforce
margin, indicates the stability of the grasping of adeformable
linear object.

6.2. Numerical Example of Grasping Evaluation

L et usdemonstrate how to computethedisturbanceforce mar-
gin by taking asimpleexampleof 2D grasping of adeformable
linear object. Assumethat alinear object is 100 unitslong and
0.1 unitsthick. Itsflexural rigidity isassumed to be 1. Let us
evaluate the stability of the two graspings illustrated in Fig-
ure 13. In Figure 13(a), two fingers push a linear object at
both end points of the object. The object can rotate around the
end points. Let / be the distance between the two end points
of the abject. Let the left end point of the initial shape be the
origin of the space coordinate system. The fingersimpose the
following geometric constraints on the object:

left finger:
right finger:

z(0) = 0,
Z(L) <1,

x(0) =0,
x(L) =0.

Note that inequality z(0) > 0 implies that the contact at the
left end point is lost and inequality z(L) < [ shows that the
contact at the right end point is also lost. Components of a
grasping force correspond to the Lagrange multipliersfor the
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Fig. 13. Two graspings of adeformable linear object.

above geometric constraints. Note that, when z(0) > 0 is
satisfied, the corresponding Lagrange multiplier is equal to
zero, which impliesthat the z-component of the contact force
at the left end point vanishes. When z(L) < [ is sdtisfied,
the corresponding Lagrange multiplier is equal to zero, so
that the z-component of the grasping force at the right end
point vanishes. Let n be the coefficient of friction between
the object and the fingers. Friction cones at the end points are
described asfollows:

FC, {[Cff” —uf.— f. <0, —Mﬁ,+ﬂ§0},

FC, = {[CJ{} ‘ wfe— fe =0, ufz+fX§0}.
Thus, whether each grasping force is involved in the corre-
sponding friction cone can be examined by evaluating two
inequalities. Consequently, it can be investigated whether the
grasping is performed successfully or not. In Figure 13(b), a
pair of two fingers pinches alinear object at its center. Let the
center point of the initial shape be the origin of the space co-
ordinate system. The fingers impose the following geometric
constraints on the object:

z(L/2) =0,
2(L/2) =0,

top finger:
bottom finger:

x(L/2) <0,
x(L/2) = 0.

We can then determine whether or not the grasping is per-
formed successfully by the above procedure.

When a disturbance force is imposed on a linear object
at point P(s,), the curvature may change discontinuously at
this point. Thisimplies that not al differential geometry co-
ordinates can be approximated by a linear combination of
continuous basic functions. Thus, each differential geometry
coordinatewill beapproximated by two combinations. That is,
two coefficient vectorswill beintroduced to approximate each
coordinate. For example, coordinate 6 (s) is approximated as
follows:

al -e(s) (s <s.)

o) = (s > s4)

a’ - e(s)

where

0(s,) =a’ -e(s,) =a’ -e(s,).
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o
(b) Grasping 2

This equation imposes a continuity condition on coordinate
0(s). Let @, and a, be collective vectors consisting of coef-
ficient vectors corresponding to the left and right parts, re-
spectively. Potential energy is the sum of the energy of the
left part, which is described by a;, and the energy of the right
part, which is described by a,. For example,

Sa

L
1 1
Ujc(as,a,) = > / R Kk*(a;) ds + > / Rik*(a,) ds.

0 Sa

Work done by a disturbance force is formulated as follows

W = fdist ° {x(sa) _xO(sa)}

where f,;,; denotes the disturbance force at point P(s,) and
xo(s,) istheinitial position of the point. Potential energy U
andwork W areincluded in eg. (13). The deformed shape can
be computed by solving a constrained optimization problem
with respect tothecollectivevectorsa, anda, under continuity
conditions of differential geometry coordinatesat point P(s, ).

L et uscomputethestability of thetwo graspingsillustrated
in Figure 13. Wewill evaluatethefirst grasping at / = 0.95L,
0.80L, and 0.60L. The magnitude of theinitial grasping force
is correspondingly given by »° = 1.02 x 103, 1.10 x 1073,
and 1.24 x 10~3. We will evaluate the second grasping at the
same values of the magnitude r® = 1.02 x 1073, 1.10 x 1073,
and 1.24 x 1073. Figure 14 illustrates the shape of a linear
object deformed by a disturbance force. It takes, on average,
25 s to compute one of the deformed shapes shown in the
figure. Figure 14(a) corresponds to the first grasping at r° =
1.10 x 10°3. A disturbance force with s, = 0.5L andn =
[ —1/+/2, 1/+/2]" isapplied to the object. Let uscomputethe
deformed shapeswhen f = 0.0x1073,1.4x1073,1.7x 1078,
and 2.0 x 10~3. As shown in the figure, contact at the right
end point islost when the magnitude of the disturbance force
exceeds 1.4 x 10-3. Figure 14(b) corresponds to the second
grasp at r° = 1.10 x 1073, A disturbance force with s, =
0.75L andn = [ —1/+/2, 1/+/2 1" is applied to the object.
Contact between the object and the fingersis maintained even
if the magnitude of the disturbance force reaches 2.0 x 10-2.
In this grasping, a deformed shape maintains contact at all
grasping points for any magnitude of the disturbance force.
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Fig. 15. Relationship between disturbance force margin and friction coefficient.

This implies that the normal reaction force at each point is
positive but does not imply that thetangential forcelieswithin
the maximum friction force.

After computing the deformed shape and contact forces at
grasping points, we can computethe disturbanceforcemargin
by examiningif each computed contact forceisinvolvedinthe
friction cone at each point. Figure 15 shows the relationship
between the disturbance force margin F,,,, and the coefficient
of friction .. We have applied disturbance forces of three dif-
ferent magnitudes, at nine action points, andin ninedirections
to obtain the relationship at each grasping. This means that
it takes about 100 minutes to plot each graph in the figure.
Thefigure shows that the second grasping is more stable than
the first grasping. Furthermore, larger values of friction coef-
ficient u and initial grasping force r° increase the stability in
each grasping.

7. Deformation Path Planning in Linear Object
Manipulation

7.1. Description of Deformation Path

In the manipul ation of adeformablelinear object, theobjectis
often deformed from one shapeinto another. L et us determine
an appropriate deformation path fromaninitia shapetoagoal

shape. It is generally required to deform alinear object with
little damage to the object. Excessive potential energy of a
linear object can be easily transformed into kinetic energy
by asmall disturbance force, in which case the shape of the
object may become unstable and change dynamically. Thus,
the potential energy of alinear object should be small during
its deformation process. It is found that a deformation path
that minimizes the value of the potential energy maximum is
preferable.

Recall that the deformation of a linear object can be de-
scribed by coefficient vectors corresponding to Eulerian an-
gles and extensional strain. Let a be a collective vector of
these coefficients. One deformation correspondsto apoint in
coefficient space. The deformation process of alinear object
is then given by a path in the coefficient space. Let a, and
a; betheinitial and goal deformations, respectively, and let
a(k) (0 < k < 1) be a path from the initial deformation
to the goal deformation. Note that functions 1 — &, k, and
K(1—-k) (i =1,2,---)areaset of basesof afunction space.
Then, any path can be approximated by alinear combination
of these basic functions

a(c.k) = (1—kao+kay+» ek’ (1—k)

i=1
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Fig. 16. Example of planar operation of linear object.

where ¢,—¢,, are expansion coefficients. Any path can be rep-
resented by an infinite number of coefficient vectors: ¢;—..
Let ¢ beacollective vector consisting of these coefficient vec-
tors, which isreferred to as the deformation path vector. The
deformation path vector ¢ determinesadeformation path from
the initial deformation a(c, 0) = a, to the goal deformation
a(c,1) = a,. Vector a(c, k) corresponds to an intermediate
deformation aong the path.

Let Ul(c, k) be the potential energy of alinear object with
deformationa(c, k). Let U, (c) be the maximum of the po-
tential energy along a deformation path represented by c:

U}‘M(LX (c) = gz]ka<)§_ U(c, k).

Recall that geometric constraints imposed on an object can
be described by a set of functions of vector ¢. Conseguently,
it is found that the optimal deformation path can be derived
by minimizing the function U, (¢) under the geometric con-
straints.

7.2. Example of Deformation Path Planning

L et usshow anumerical examplein order to demonstrate how
the deformation path is computed by our approach. Figure 16
shows an example of aplanar operation. The initial deforma-
tion of alinear object is shown in Figure 16(a) and its goal
deformation is given in Figure 16(b). In this example, it is
assumed that alinear object has no torsional deformation and
that its gravitationa energy is negligible. Namely, the poten-
tial energy consists of flexural energy alone: U = Uy,,,. In
other words, angles ¢ and v are constantly zero, implying
that the linear object is deformed in a plane.

The angle of the left end point of the object is fixed. The
object must avoid an obstacle illustrated in the figure. Thus,
geometric constraints imposed on the object are represented
asfollows:
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(0.75, 0.60)

(b) Goal deformation

0(0,k)=0, Yke[O 1],
z7(s,k) <08, V{s|—-02<x(s, k) <0.2},
Vke[O 1].

L et us approximate a deformation path by thefirst five terms:

3
a(c.k) = (1—kao+ka; + ) k' (1— k).

i=1

The deformation path vector ¢ then consists of afinite num-
ber of vectors: ¢4, ¢,, and ¢3. Figure 17 shows the computed
optimal deformation path. It takes 8 sto compute the optimal
deformation path shown in the figure. The right side of the
object isfirst guided downward from theinitial location, then
moved upward, and finally moved downward to the goal lo-
cation. The position and orientation of the right end point are
plotted in Figure 18.

Let us verify if the optima deformation path can be per-
formed by controlling the position and orientation of theright
end point of alinear object. Thus, let us compute a deforma-
tion path of alinear object when the position and orientation
of itsright end point are given as plotted in Figure 18. This
path isreferred to as afeasible deformation path. The optimal
and feasible deformation paths are plotted in Figure 19. The
two paths coincide with each other well. Namely, this optimal
path can be performed by controlling the location of the right
end point aone in this example. The experimental result is
also plotted in the figure. The deformation of a sheet of vinyl
chloride 100 mm long, 12 mm wide, and 0.5 mm thick has
been measured. The experimental result agreed well with the
computed feasible deformation path. In this example, the op-
timal path was performed by controlling the location of the
right end point of the object.

Generally, the optimal path may not be performed by con-
trolling oneend point of alinear object. A set of control points
may be needed to perform the optimal path within a given
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Fig. 18. Motion of right end point in optimal deformation path.

approximation. Feasibility can be examined by simulating a
deformation path performed by the set of control points.

8. Concluding Remarks

We have described a modeling approach for linear object de-
formation based on an extension of differential geometry and
its applications to grasping and deformation path planning.
First, we reformulated the description of linear object defor-

0.0 0.2 0.4 0.6 0.8 1.0
k

(b) Orientation

mation within the context of differential geometry to obtain a
clearer mathematical expression. We redefined curvature and
torsional angle so that any expression of the rotation matrix
could be applied to the reformulated description. Secondly,
we have presented deformation computations for linear ob-
jects to demonstrate the feasibility of the proposed modeling
approach. We have shown that the devel oped model can sim-
ulate kinking and asymmetric deformation under gravity. One
drawback of the proposed model is the relatively long com-
putation time: 1040 s per deformation. This was caused by
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the optimization calculus, which is essential in energy-based
static modeling. Next, we compared computational and ex-
perimental results. We have found that the difference was 1%
in 2D deformation if the gravity is negligible while it went
up to 7% otherwise, and it exceeded 6% in 3D deformation.
This difference may be due to the discrepancy of parameters
including rigidities and orientation angles at either end point.
Finally, we demonstrated that the proposed method can be
employed for manipulative operations of deformable linear
objects, such as grasping and deformation path evaluation.
We have proposed the disturbance force margin to evaluate
the stahility of the grasping. The proposed method has been
successfully applied to the computation of the margin. Also,
it has been successfully applied to computation of the optimal
deformation path.

The proposed approach is applicable to manipul ative oper-
ations of alinear object including its self-interference. Thus,
we will use it to describe knotting and raveling manipula-
tion of alinear object. Identification of physical parameters
and boundary conditions at operational points presentsachal-
lenge which, if met, would improve the model accuracy. In
this paper, we have devel oped static modeling of linear object
deformation. Future research will include astudy on dynamic
modeling of linear object deformation based on differential
geometry.
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