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Abstract

We describe the modeling of linear object deformation based on dif-
ferential geometry and its applications to manipulative operations. A
particle-based approach, the finite element method, and the Cosserat
theory have been applied to the modeling of linear object deforma-
tion. In this paper, we establish an alternative modeling approach
based on an extension of differential geometry. First, we extend dif-
ferential geometry to describe linear object deformation including
flexure, torsion, and extension. Secondly, we show computational
results to demonstrate the feasibility of the proposed modeling tech-
nique, and we compare computational and experimental results to
demonstrate the accuracy of the model. Next, we apply the proposed
approach to the grasping of a deformable linear object. We propose
a disturbance force margin to indicate the stability of the grasping
and we describe the computation of the margin using the proposed
approach. Finally, we apply the proposed approach to the deforma-
tion path planning of a linear object. We formulate the minimization
of potential energy during a deformation path. We compute the op-
timal deformation path and a feasible deformation path, which are
compared with an experimental result.

KEY WORDS—deformation, modeling, linear objects, stat-
ics, differential geometry

1. Introduction

Many manipulative operations deal with deformable linear
objects such as wires, cords, and threads with flexural, tor-
sional, and extensional deformations in three-dimensional
(3D) space. For example, electrical and optical cables are ma-
nipulated in the building and maintenance of communication
systems, wires and cables are manipulated in the manufac-
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turing of electrical apparatuses and automobiles, and medi-
cal threads are used in surgery. Linear objects are defined as
objects that are much larger along one of the orthogonal di-
rections than along the other two. Modeling of linear object
deformation is required for many purposes, including plan-
ning of manipulative operations and design of products.

In this paper, we describe the modeling of linear object de-
formation based on differential geometry and its applications
to manipulative operations. Much research has been done on
the modeling of linear object deformation; a particle-based
approach, the finite element method (FEM), and the Cosserat
theory have been applied to the modeling. We establish an
alternative modeling approach based on an extension of dif-
ferential geometry. First, we extend differential geometry to
describe linear object deformation including flexure, torsion,
and extension. This follows on from a method that we pre-
viously proposed for describing linear object deformation in-
tuitively (Wakamatsu, Hirai, and Iwata 1995; Hirai 2000).
Here, we will focus on a mathematical description based on
differential geometry. Secondly, we show computational re-
sults to demonstrate the feasibility of the proposed model-
ing method. Since planning of manipulative operations and
design of products require that the model be accurate, we
compare computational and experimental results to demon-
strate the accuracy. Next, we apply the proposed approach
to manipulative operations of deformable linear objects, i.e.,
grasping and deformation path planning. We propose a dis-
turbance force margin to indicate the stability of the grasping
and describe the computation of the margin using the pro-
posed approach. In deformation path planning, we compute
the optimal deformation path and a feasible deformation path
using the proposed approach.

1.2. Related Work

Solid mechanics has been studied for a long time to for-
mulate the deformation of solid bodies (Fung 1965). Solid

293

www.sagepublications.com


294 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / March 2004

mechanics basically focuses on the local deformation of solid
bodies rather than the global deformation of objects. Model-
ing of global object deformation has been extensively stud-
ied in computer graphics and virtual reality. Elasticity the-
ory has been applied to physically based modeling of de-
formable objects (Terzopoulos et al. 1987; Terzopoulos and
Witkin 1988). The introduction of the FEM has extended these
studies. Geometrically-nonlinear FEM has been applied to the
modeling of global deformation with real-time haptic render-
ing (Zhuang and Canny 2000). Rotation-invariant nonlinear
FEM has been applied to the modeling of anisotropic soft
tissues for real-time simulation (Picinbono, Delingette, and
Ayache 2001). Space and time adaptive sampling of multi-
resolution hierarchy of tetrahedral meshes with large Green
strain formulation has allowed real-time simulation of global
object deformation (Debunne et al. 2001). The boundary el-
ement method (BEM) has been introduced to the modeling
of deformable objects (James and Pai 1999, 2002). The BEM
approach is applicable to only uniform objects, but can re-
duce the computation time, resulting in real-time simulation
of global object deformation. In the particle-based approach,
a deformable object is represented by a set of particles con-
nected by mechanical elements (Witkin and Welch 1990), and
the penalty method has been proposed to describe the collision
among objects (Joukhader, Deguet, and Laugie 1998).

The high aspect ratio of thin objects, such as paper and
cloth, and linear objects, such as wire and thread, often causes
instability in the computation of deformed shapes. Thus, var-
ious modeling techniques have been adapted for thin or lin-
ear objects. For example, the deformed shape of a thread
suspended by two points has been analyzed using calculus
of variations and it has been found that the shape can be
described by a catenary (Irvine 1981). The deformation of
clothes has been described using catenaries (Weil 1986). In
these approaches, the material properties are not considered;
only the mass is considered. Nonlinear shell theory has been
applied to the modeling of fabric deformation (Eischen, Deng,
and Clapp 1996). A particle-based model of cloth has been
proposed for drape simulation (Eberhardt, Weber, and Strass-
wer 1996). Implicit numerical integration has been introduced
to the particle-based cloth model to reduce computation time
(Baraff and Witkin 1998). Knot tying of a thread has been sim-
ulated using a particle-based model of the thread (Phillips,
Ladd, and Kavraki 2002). The deformed shape of threads
in a fabric has been described geometrically (Leaf 1960). In
computer graphics, the particle-based approach has been ap-
plied to simulate the motion of hairs. Flexure and extension of
hairs have been described in Rosenblum, Carlson, and Tripp
(1991), while flexure and torsion of hairs have been described
in Daldegan et al. (1993), implying that flexure, torsion, and
extension of a linear object can be described using a particle-
based approach. Deformation of a linear object can be mod-
eled using beam elements in the FEM. Spline-based modeling
has been applied to the real-time simulation of soft tissues as

well as sutures in surgery (Kühnapfel, Çakmak, and Maass
2000). Linear objects have been approximated using beams
in the engineering community; models exist to describe small
deflection of beams (Timoshenko 1955), and also large defor-
mation using nonlinear beam finite elements (Belytschko, Liu,
and Moran 2000). Recently, fast algorithms have been intro-
duced to describe linear object deformation using the Cosserat
formulation (Pai 2002). Cosserat elements possess six degrees
of freedom: three for translational displacement and three for
rotational displacement. Flexure, torsion, and extension of a
linear object can be described by use of Cosserat elements.

Mathematical descriptions of linear objects have been stud-
ied in knot theory and differential geometry. Knot theory pro-
vides a topological classification and description of knots of a
thread (Adams 1994). Language has been designed to describe
the transitions among knot topologies during the manipulation
of a thread (Hopcroft, Kearney, and Krafft 1991). In differ-
ential geometry, curved lines in two-dimensional (2D) or 3D
space have been studied to describe their shapes mathemati-
cally (Gray 1993). Differential geometry can describe flexure
of a linear object, but not extension along or torsion around
the object.

Manipulation of deformable objects has been studied in
robotics (Taylor 1990; Henrich and Wörn 2000). Insertion of
a wire into a hole has been analyzed using a beam model
of the wire to derive a strategy to perform the insertion suc-
cessfully (Zheng, Pei, and Chen 1991; Nakagaki et al. 1997).
Vibration-free handling of a beam has been investigated using
a beam dynamic model (Chen and Zheng 1995). Sensor-based
dynamic insertion of a wire has been investigated (Yue and
Henrich 2002). A distributed compliance model has been pro-
posed to describe the assembly of deformable parts (Villarreal
and Asada 1991). A particle-based model of fabric has been
applied to control the fabric positioning operation (Hirai and
Wada 2000). Inverse problems in the manipulation of a linear
object have been solved using an object model computed in
parallel on a cluster system (Remde and Henrich 2000).

Much research has focused on the modeling of linear
object deformation. The particle-based approach, the FEM,
and the Cosserat theory have been employed. In this paper,
we establish an alternative modeling based on an extension of
differential geometry. Mathematical description of a curved
line in 3D space has been studied in differential geometry. It
is well known that, in differential geometry, any curved line
can be specified uniquely by two functions, which implies
that flexure of a linear object can be expressed by these two
functions. However, extension along and torsion around the
curved line cannot be described in differential geometry since
these deformations cannot be determined uniquely for any one
curved line. Two additional functions need to be introduced to
express the extension and torsion of a linear object. Thus, at
least four functions are required to describe linear object de-
formation, i.e., flexure, torsion, and extension. The proposed
method describes linear object deformation by four functions.
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We often have to manipulate cables or wires composed of
several materials. Our model is applicable to the modeling of
these objects since flexure, torsion, and extension of the lin-
ear object are formulated independently. Thus, we can iden-
tify deformation parameters independently and can construct
the object model easily. The particle-based approach is also
applicable but it requires many more parameters to describe
the deformation. Our model is continuous so that deformation
can be described by relatively few parameters. These proper-
ties are conducive to the planning of manipulative operations
of deformable linear objects. Thus, we apply the proposed
approach.

2. Description of Linear Object Deformation
Based on Differential Geometry

2.1. Differential Geometry Coordinates

In this section, we formulate the deformation of a linear ob-
ject in 3D space. As described by Frenet–Serret formulae in
differential geometry, any curve in 3D space can be specified
by the Frenet frame field (Gray 1993). However, extension
along a linear object and torsion around its central axis can-
not be described in the Frenet frame field. Instead, we specify
the relationship between two frame fields defined in natural
and deformed states of a linear object. LetL be the length
of the object and lets be the distance from one end point of
the object along its central axis. Let P(s) be the point on the
object at distances. In order to describe the deformation of a
linear object, the global space coordinate system and the local
object coordinate systems at individual points on the object
are introduced as shown in Figure 1. Let O− xyz be the co-
ordinate system fixed in space and P− ξηζ be the coordinate
system fixed at an arbitrary point P(s) on the object. Assume
that the object is straight along thez-axis in its natural state
whereby the object has no deformation. Select the direction of
coordinates so that theξ -, η-, andζ -axes are parallel to thex-,
y-, andz-axes, respectively, in the natural state. Deformation
of the object is then represented by the relationship between
the local coordinate system P−ξηζ at each point on the object
and the global coordinate system O− xyz. This is referred to
as differential geometry coordinate representation.

Let us describe the orientation of the local coordinate sys-
tem with respect to the space coordinate system by use of
Eulerian angles,φ(s), θ(s), andψ(s). The rotational transfor-
mation from the coordinate system P− ξηζ to the coordinate
system O− xyz will be expressed by the following rotation
matrix:

A(φ, θ, ψ) =

 cosφ − sinφ 0

sinφ cosφ 0
0 0 1




P(s)s

L

ζ
ξ

η

x

y

z
O

x0

(a) Natural state

z

x

y
O

x0 η

P(s)
ζξ

(b) Deformed state

Fig. 1. Coordinate systems describing object deformation.


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ





 cosψ − sinψ 0

sinψ cosψ 0
0 0 1




=

 cos θ cosφ cosψ − sin φ sinψ

cos θ sin φ cosψ + cosφ sinψ
− sin θ cosψ

− cos θ cosφ sinψ − sin φ cosψ sin θ cosφ
− cos θ sin φ sinψ + cosφ cosψ sin θ sin φ

sin θ sinψ cos θ


 . (1)

Note that the Eulerian angles depend on distance s. Let ξξξ , ηηη,
andζζζ be unit vectors along the ξ -, η-, and ζ -axes, respectively,
at point P(s). These unit vectors are given by the first, second,
and third columns of the rotation matrix, respectively. Namely,

A(φ, θ, ψ) = [
ξξξ ηηη ζζζ

]
.

2.2. Flexure, Torsion, and Extension of Linear Object

Let us describe the curvature of a deformable linear object and
its torsional angle in order to express flexural and torsional de-
formations of the object. Let ωξ , ωη, and ωζ be infinitesimal
ratios of rotation angles around the ξ -, η-, and ζ -axes, re-
spectively, at point P(s) to distance s. Since ξξξ , ηηη, and ζζζ are
orthonormal vectors, the ratios satisfy the following equation:[

dξξξ

ds

dηηη

ds

dζζζ

ds

]
= [

ξξξ ηηη ζζζ
]


 0 −ωζ ωη

ωζ 0 −ωξ
−ωη ωξ 0


 .
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From this equation, we have
 0 −ωζ ωη

ωζ 0 −ωξ
−ωη ωξ 0


 = AT dA

ds
. (2)

Note that the above equation is similar to the relationship be-
tween the angular velocity vector and rotation matrix in rigid-
body motion. By substituting eq. (1) into the above equation,
the infinitesimal angle ratios can be described as follows:

 ωξ
ωη
ωζ


 =


 − sin θ cosψ

sin θ sinψ
cos θ


 dφ

ds
+


 sinψ

cosψ
0


 dθ

ds

+

 0

0
1


 dψ

ds
.

Let κ and ω be the curvature and the torsional angle at point
P(s), respectively. The curvature and torsional angle can then
be described using infinitesimal angle ratios as follows:

κ2 = ω2
ξ
+ ω2

η
=

(
dθ

ds

)2

+
(

dφ

ds

)2

sin2
θ, (3)

ω2 = ω2
ζ
=

(
dφ

ds
cos θ + dψ

ds

)2

. (4)

Note that the curvatureκ and the torsional angleω both depend
on distance s. It should be emphasized that, using eq. (2),
we can compute infinitesimal ratios ωξ , ωη, and ωζ for any
expression of rotation matrix A. This implies that the above
derivation is general and that we can derive the curvature κ
and the torsional angle ω for any expression of the rotation
matrix.

In order to express the extensional deformation of a linear
object, a strain at each point P(s) will be introduced. Let ε
be extensional strain at point P(s) on a linear object along its
central axis. It turns out that the unit vector along the ζ -axis at
the natural state can be transformed into the following vector
due to the object deformation:

(1 + ε)ζζζ (s) = (1 + ε)

 sin θ cosφ

sin θ sin φ
cos θ


 . (5)

Let xxx(s) = [ x(s), y(s), z(s) ]T be the position vector of
point P(s). The position vector can be computed by integrating
vector (1 + ε)ζζζ (s). Namely,

xxx(s) = xxx0 +
s∫

0

(1 + ε)ζζζ (s) ds, (6)

where xxx0 = [ x0, y0, z0 ]T is the position vector at the end
point P(0).

From the above discussion, it is found that the geomet-
rical shape of a deformed linear object can be represented
by four functions, namely, Eulerian angles φ, θ , and ψ , and
extensional strain ε. Note that each function depends upon
parameter s.

3. Static Modeling of Linear Object Deformation

In this paper, the variational principle in statics are applied to
the modeling of linear object deformation. According to this
principle, under the imposed constraints, the internal energy of
a linear object attains its minimum value in its stable deformed
state. Dynamical effects during operations are assumed to be
negligible.

3.1. Internal Energy of Linear Object

Let us formulate the potential energy of a deformed linear
object and the work done by external forces to express the
internal energy of the object. First, the potential energy of a
linear object will be formulated. Assume that the thickness
and the width of the object are negligible. Applying the as-
sumption of Bernoulli and Navier, it turns out that the potential
energy U can be described as follows

U = Uflex + Utor + Uext + Ugrav (7)

where Uflex , Utor , and Uext represent the flexural, torsional,
and extensional energy of the object, respectively, and Ugrav
denotes its gravitational energy.

The object’s total flexural energy Uflex and total torsional
energyUtor can be computed by integrating, respectively, flex-
ural energy and torsional energy at point P(s) over the object.
Assuming that the flexural energy and the torsional energy are
proportional to the bending moment and twisting moment at
each point P(s), respectively, the energies can be described as
follows

Uflex = 1

2

L∫
0

Rf κ
2 ds, (8)

Utor = 1

2

L∫
0

Rtω
2 ds (9)

where Rf and Rt represent the flexural and torsional rigidity
at point P(s), respectively. Note thatRf andRt may vary with
respect to distance s. Assuming that the extensional energy
is proportional to the extensional strain at each point P(s),
extensional energy Uext is given by

Uext = 1

2

L∫
0

Reε
2 ds (10)
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whereRe denotes the extensional rigidity of the object, which
may depend on distance s. Assuming that gravity forces act
along the x-axis, the gravitational energy is given by

Ugrav =
L∫

0

Dx ds (11)

where D represents weight per unit length of the object. The
quantity D may also vary with distance s.

Let pppi be an external force applied to a linear object at
point P(si) and let δqqqi be the resultant displacement of that
point. Then, work Wi done by the external force pppi can be
described as follows:

Wi = pppi · δqqqi. (12)

Note that displacement δqqqi can be represented by four vari-
ables: φ(s), θ(s), ψ(s), and ε(s).

From the above discussion, the internal energy V can be
described as follows:

V = U −
∑
i

Wi. (13)

Thus, the internal energy can also be represented in terms of
the four variables, φ(s), θ(s), ψ(s), and ε(s).

3.2. Geometric Constraints

The interaction between the linear object and other objects
such as fingertips or obstacles imposes geometric constraints
on the linear object. Let us formulate these geometric con-
straints. The relative position between two points on the ob-
ject is often controlled during a manipulative operation of the
object. Consider a constraint that specifies the positional rela-
tionship between two points on the object. Let lll = [lx, ly, lz ]T

be a predetermined vector describing the relative position be-
tween two operational points, P(sa) and P(sb). Recall that the
spatial coordinates corresponding to distance s are given by
eq. (6). Thus, the following equation must be satisfied:

xxx(sb)− xxx(sa) = lll. (14)

The orientation at one point on the object is often controlled
during an operation as well. This constraint is simply de-
scribed as follows

A(φ(sc), θ(sc), ψ(sc)) = A(φc, θc, ψc), (15)

where φc, θc, and ψc are predefined Eulerian angles at one
operational point P(sc).

Contact between a linear object and rigid obstacles in oper-
ation space also yields other geometric constraints. Note that
any point on the object must be located on or outside each
obstacle. Let us describe the surface of an obstacle fixed in
space by function f (xxx) = 0. Assume that the value of the

function is positive inside the obstacle and negative outside
it. The condition that a linear object is not interfered with by
this obstacle is then described as follows

f (xxx(s)) ≤ 0, ∀s ∈ [0, L], (16)

where xxx(s) is described in eq. (6). Note that the condition that
an object is not interfered with by obstacles is described by
a set of inequalities since mechanical contacts between the
objects constrain the motion of the object unidirectionally.

Furthermore, self-interaction of a linear object should be
considered. Assume that the cross-section of a linear object
is circular. Let r(s) be the radius of the cross-section at point
P(s). Then, in order to avoid interference with itself, a linear
object must satisfy the following condition:∣∣xxx(si)− xxx(sj )∣∣ ≥ r(si)+ r(sj ),

∀si, sj ∈ [0, L], s.t.
∣∣si − sj ∣∣ ≥ r(si)+ r(sj ). (17)

From the above discussion, it is found that the geometric
constraints imposed on a linear object are given by not only
equational constraints such as eqs. (14) and (15) but also in-
equality constraints such as eqs. (16) and (17). The deformed
shape of the object is, therefore, determined by minimizing
the internal energy described in eq. (13) under these geomet-
ric constraints imposed on the object. Namely, computation
of the deformed shape of an object results in a variational
problem under equational and inequality constraints.

4. Computation of Linear Object Deformation

4.1. Computation Algorithm

Computation of the deformed shape of a linear object results
in a variational problem as mentioned in the previous section.
One method to solve a variational problem is the Euler ap-
proach, which is based on the stationary condition in function
space. Recall that the geometric constraints resulting from
mechanical contacts are unidirectional and mathematically
describable by inequalities such as eqs. (16) and (17). These
conditions are nonholonomic constraints (Goldstein 1980).
Thus, the shape of an object that minimizes internal energy
does not necessarily satisfy the stationary condition. This im-
plies that the Euler approach, which is based on the stationary
condition, is not applicable.

In this paper, we develop an algorithm based on the Ritz
method (Elsgolc 1961) and a nonlinear programming tech-
nique. Let us express functions φ(s), θ(s), ψ(s), and ε(s) by
linear combinations of basic functions e1(s)–en(s):

φ(s) =
n∑
i=1

a
φ

i ei(s)
�= aaaφ · eee(s),

θ(s) =
n∑
i=1

aθ
i
ei(s)

�= aaaθ · eee(s),
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ψ(s) =
n∑
i=1

a
ψ

i ei(s)
�= aaaψ · eee(s),

ε(s) =
n∑
i=1

aε
i
ei(s)

�= aaaε · eee(s).

Here, aaaφ , aaaθ , aaaψ , and aaaε are vectors consisting of coefficients
corresponding to functions φ(s), θ(s),ψ(s), and ε(s), respec-
tively, and vector eee(s) is composed of basic functions e1(s)–
en(s). Substituting the above equations into eq. (13), internal
energy V is described by a function of coefficient vectors aaaφ ,
aaaθ , aaaψ , and aaaε. The geometric constraints are also described
by conditions involving the coefficient vectors. In addition,
discretizing eqs. (16) and (17) by dividing interval [0, L] into
N small intervals yields a finite number of conditions. As a
result, a set of the geometric constraints is expressed by equa-
tions and inequalities in terms of the coefficient vectors.

Consequently, the deformed shape of a linear object can
be derived by computing a set of coefficient vectors aaaφ , aaaθ ,
aaaψ , and aaaε that minimizes the internal energy under the geo-
metric constraints. This minimization problem under equality
and inequality constraints can be solved by the use of a non-
linear programming technique such as the multiplier method
(Avriel 1976). In this method, a minimization problem under
geometric constraints is converted into an unconditional min-
imization problem with Lagrange multipliers. The Lagrange
multipliers denote the components of reaction forces corre-
sponding to individual geometric constraints. The shape of the
deformed object corresponding to a set of coefficient vectors
can be computed by eq. (6).

4.2. Examples of Computation

In this section, numerical examples demonstrate how the pro-
posed method computes the deformed shape of a linear object.
The first example shows the transition between topologically
different shapes of a linear object considering its flexural and
torsional deformations. The second example demonstrates the
effect of the extensional rigidity of a linear object on its shapes.
The third example shows the shape of a linear object under
gravity. The following set of basic functions are used in the
computation of these examples:

e1 = 1, e2 = s,
e2i+1 = sin

2πis

L
,

e2i+2 = cos
2πis

L
, (i = 1, 2, 3, 4).

Assume that the length of the object L is equal to 100 in
the following examples. We apply the multiplier method and
the BFGS formula in the quasi-Newton method to the non-
linear optimization. The multiplier method converts a mini-
mization problem with geometric constraints into an uncon-
ditional minimization problem. The BFGS formula solves the

Fig. 2. Computational result of topological shape transition.

converted unconditional minimization problem. All optimiza-
tions start from the natural state of a linear object. All the
following computations were performed on a 833 MHz Al-
pha 21264 CPU with 1 GB memory operated by Tru64UNIX.
Programs were compiled by a Compaq C Compiler V6.4 with
optimization option -O4.

4.3. Object Deformation Considering Flexure and Torsion

The first example demonstrates the deformation of a linear
object with flexure and torsion. The potential energy of the
object is assumed to be given by the sum of the flexural and
torsional energies of the object: U = Uflex + Utor . On nor-
malizing the potential energy and the geometric constraints
by dividing variable s by length L, it is found that the shape
of the object is determined by the following dimensionless
quantity:

ρt = Rt

Rf
.

Suppose that ρt = 0.77. Let us align the central axis at both
end points of a linear object in the initial state. Then, let us
move one end point along this axis in order to shorten the
distance between the two end points specified by l. Computed
shapes of a linear object of length L are shown in Figure 2.
Values of the distance l corresponding to the computed shapes
are 0.6L, 0.5L, 0.4L, 0.3L, 0.2L, and 0.1L. The shape of
a linear object changes from a knot-free shape into a one-
knot shape while the distance between the two end points
decreases, as shown in the figure. In a one-knot shape, the
object has not only flexural deformation but also torsional
deformation. Computation times are listed in Table 1. CPU
time increases as length l decreases since optimization starts
from the natural state of the linear object.

Figure 3 shows the computed flexural energyUflex and the
torsional energyUtor . We have also plotted the flexural energy
of a linear object with flexural deformation alone:U = Uflex .
This figure shows that the sum of the flexural and torsional
energies is smaller than the flexural energy without torsional
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Table 1. Time to Compute Topologically Different Shapes

l 0.6L 0.5L 0.4L 0.3L 0.2L 0.1L

CPU time (s) 17.6 23.1 26.5 35.5 38.6 38.5

po
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torsional energy

bending energy

without torsional deformation
40
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0
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l / Lratio of distance to object length :

Fig. 3. Potential energy in topological shape transition.

deformation when the ratio l/L is below a boundary value,
0.3 in this example. The deformed shape transits between a
knot-free shape and a one-knot shape at the boundary value.
We also found that the boundary value, which can be deter-
mined through the above computation, depends on ρt . As a
result, a linear object changes from a knot-free shape into
a one-knot shape as the ratio l/L drops below a boundary
value, which depends on the flexural and torsional rigidities.
As demonstrated here, our proposed approach can simulate
this topological shape transition.

Kinking, or torsional buckling, is a well-known phe-
nomenon in linear object deformation including flexure and
torsion. Our proposed approach is capable of simulating this
phenomenon. Figure 4 shows the result of computed kinking.
Let us first twist a linear object, i.e., fix one end point of the
object and rotate the other around its central axis. Then, let us
reduce the distance between the two end points. Let ω0 be the
twisting angle. The left two shapes in the figure correspond to
the twisting phase at ω0 = 2π and 4π . The other four shapes
in the figure correspond to the reducing phase at l = 0.8L,
0.6L, 0.4L, and 0.2L. A knot is formed in the object at any
value of distance l, as shown in the figure. Recall that a linear
object has no knots when l/L exceeds 0.3 without initial twist-
ing. This example demonstrates how a knot is generated with
the initial twisting. Computation times are listed in Table 2.
CPU time increases with twisting angleω0 since optimization
starts from the natural state of a linear object. Figure 5 shows
the flexural and torsional energies during a kinking process.
Twisting of a linear object increases the energy of the object
and reducing the distance between the end points decreases
the energy, as shown in the figure.

Fig. 4. Computational result of kinking.
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Fig. 5. Potential energy in kinking.

4.4. Effect of Object Extension

The second example demonstrates the computation of the ob-
ject shape considering the extensional energy. The potential
energy of a linear object is given by the sum of its flexural
and extensional energies: U = Uflex + Uext . On normalizing
as in the first example, it is found that the shape of the object
is determined by the following dimensionless quantity:

ρe = Re

Rf
L2.
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Table 2. Time to Compute Deformation in Kinking

ω0 2π 3π 4π l 0.8L 0.6L 0.4L 0.2L

CPU time (s) 8.5 17.2 29.6 CPU time (s) 30.5 32.6 30.0 35.0

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6

x/
L

z/L

infinity
500
300
200
100

Fig. 6. Example of computed object shapes considering
extension.

Quantity ρe represents the contribution of the extensional en-
ergy to the shape of a linear object. The extension is small
when the quantity ρe is large and it is nil at ρe = ∞. Let us
compute the deformed shapes of a linear object at ρe = ∞,
500, 300, 200, and 100. The distance between the end points
along the z-axis is set to 0.6L in this computation. The com-
puted shapes are shown in Figure 6. Note that the length of
the object is less than the original length L. The height and
length of the object decrease with decreasing ρe, as shown
in the figure. Extensional deformation without flexural defor-
mation occurs when parameter ρe is less than 100.

4.5. Effect of Gravity

The third example demonstrates the computation of the object
shape considering the gravitational energy. The potential en-
ergy of a linear object is then given by the sum of its flexural
and gravitational energies:U = Uflex+Ugrav. On normalizing
as in the first example, it is found that the shape of the object
is determined by the following dimensionless quantity:

ρg = D

Rf
L3.

Quantity ρg represents the contribution of the gravitational
energy to the shape of a linear object. The gravitational effect
is negligible atρg = 0. Let us compute the deformed shapes of
a linear object at ρg = 0, 100, 150, 200, and 400. The distance
between the end points along the z-axis is taken to be 0.85L in

this computation. The computed shapes are shown in Figure 7.
As shown in the figure, the height of the object decreases with
increasing ρg. In addition, the shape is no longer symmetric
when ρg exceeds 100. Note that we have two possible shapes
that are mirror images about the central vertical line. One of
the shapes is illustrated in the figure. In order to verify that
the asymmetric shape minimizes the potential energy, let us
compute the potential energy of the object assuming that the
deformed shape is symmetric. The potential energy U is, for
example, equal to 0.255 assuming that the deformed shape
is symmetric while the minimum value of potential energy
is equal to 0.254 at ρg = 200 resulting from Rf = 1, D =
2×10−4, andL = 100. That is, the symmetric shape does not
satisfy the condition that the potential energy is at its minimum
in a stable deformed shape. This implies that deformed shapes
are asymmetric when the dimensionless quantity ρg exceeds
a certain value.

5. Experimental Verification

5.1. Two-Dimensional Shape Measurement

In this section, the computation results will be experimentally
verified by measuring the deformed shape of a linear object.
Let us measure the 2D deformation of two types of paper
sheets as shown in Figure 8. One is a rectangle 30 mm wide,
and the other is a trapezoid whose upper and lower bases are
50 and 100 mm wide, respectively. Both are 200 mm long and
92 µm thick. Let us evaluate the deformed shape of a paper
illustrated in Figure 8(a) along the z–x plane. The flexural
rigidity Rf and the weight D per unit length of the paper are
9.8×10−5 N m2 and 2.0×10−2 N m−1, respectively. The paper
is deformed so that the distance between its ends is 180, 140, or
70 mm. Quantity ρg turns out to be equal to 1.60. This implies
that the gravitational energy is negligible in the computation.
Angles θ(0) and θ(L) are measured and are estimated as 0.17
and 0 (rad), respectively. The computed and measured shapes
of the deformed paper are shown in Figure 9 as solid and dotted
lines, respectively. The difference between the computed and
experimental values along the z-axis is 2 mm at most. Namely,
the ratio of the difference in paper length is approximately 1%.

Next, let us evaluate the deformed shape of a paper il-
lustrated in Figure 8(b). The flexural rigidity Rf and the
weight D per unit length change according to the paper
width b mm and are taken to be 3.23b × 10−6 N m2 and
6.86b × 10−4 N m−1, respectively. Furthermore, the width b
is given by 50 + 0.25s mm. Note that our approach can be
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applied to the deformation of a linear object when its phys-
ical properties depend on variable s. Angles θ(0) and θ(L)
are estimated as 0.17 and 0 (rad), respectively. The computed
and measured shapes of the deformed paper are illustrated in
Figure 10. The difference between the computed and experi-
mental values along the z-axis is 2 mm at most. Namely, the
ratio of the difference in the paper length is approximately
1%.

Let us verify asymmetric deformation plotted in Figure 7.
We have measured the deformation of rectangular papers
15 mm wide and 60 µm thick. The flexural rigidity Rf and
the weightD per unit length of the papers are 1.4×10−6 N m2

and 8.8 × 10−3 N m−1. The length of the papers L is taken to
be 200, 300, and 400 mm. Then, quantity ρg is correspond-
ingly given by 50, 172, and 405. The papers are deformed so
that the distance between the end points is 0.85L. The mea-
sured shapes are plotted in Figure 11. Comparing Figures 11
and 7, we find that the computation describes the measured
asymmetric deformation well. The maximum difference be-
tween the computed and experimental values along the z-axis
is 7 mm atL = 200 mm, 20 mm atL = 300 mm, and 20 mm at
L = 400 mm. Thus, the ratio of the difference in paper length
is approximately 4% at L = 200 mm, 7% at L = 300 mm,
and 5% at L = 400 mm. The difference in the last experiment
is larger than that in the first two experiments. The deformed
shapes are almost entirely determined by the orientation angle
at each end point and the flexural rigidity in the first two ex-

periments since the gravitational energy is negligible, while,
in the last experiment, the weight per unit length plays a role
as well. In other words, more parameters must be determined
in the last experiment than in the first two. This is what causes
the larger difference in the last experiment.

5.2. Three-Dimensional Shape Measurement

In this section, we describe the measurement of 3D deforma-
tion of a linear object. We have measured the shape of a metal
wire 871 mm long. The wire’s flexural rigidity Rf and the
torsional rigidity Rt are 6.6 × 10−4 N m2 and 2.3 × 10−4 N
m2, respectively. Weight D per unit length of the wire is
1.0 × 10−2 N m−1. Two manipulators control the position
and orientation of both end points of the wire. In the initial
state, one end point is rotated by ω0 while keeping the wire
straight. Next, the distance between the two end points lz is
decreased by controlling the motion of the two manipulators.
Then, the object is both flexed and twisted. This implies that
its shape is no longer limited to one plane. The shape of the
deformed wire is measured by two cameras. The optical axes
of the cameras intersect at one point at right angles. Let one
optical axis be the x-axis and the other axis be the y-axis.
The projections of the deformed shape onto the z–x and z–y
planes can then be directly measured by the two cameras.

Figure 12 shows the computed and measured shapes of a
deformed wire atω0 = π (rad). The solid and dotted lines rep-
resent the computed and measured values, respectively. From
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the measured values, the distances between the two end points
along thex-axis andy-axis, lx and ly , and the orientations at the
end points, A(φ(0), θ(0), ψ(0)) and A(φ(L), θ(L), ψ(L)),
have been estimated. The estimated values have been used in
the computation of the deformed shapes of a wire. The grav-
itational effect is assumed to be negligible. The difference
between the computed and experimental values along the x-
and y-axes is 50 mm at most. The ratio of the difference in the
wire length is approximately 6%. The difference in this 3D
experiment is larger than the difference in the first two 2D ex-
periments. Note that more parameters must be determined in
the 3D experiment: three orientation angles at each end point
of the wire and its torsional rigidity. This causes the larger
difference in the 3D experiment.

6. Grasping of Deformable Linear Object

6.1. Stability of Deformable Object Grasping

In this section, we apply the proposed approach to the grasp-
ing of a deformable linear object. Force closure has been
proposed to evaluate the stability of the grasping of a rigid
object (Mason 2001). The stability is examined by investigat-
ing whether force/moment equilibrium is kept or is broken
against an arbitrary disturbance force/moment applied to the
object. Note that a set of forces applied to a rigid object at
different points can be equivalently converted into a combi-
nation of force and moment at one representative point. This
conversion originates from the definition of a rigid body: the
distance between any two points on the object is invariant.
On the other hand, the conversion cannot be performed for a
set of forces applied to a deformable object since the distance
between two points on the object may vary. Moreover, in the
grasping of a rigid object, it is often assumed that each finger
can exert a grasping force involved in the friction cone at the
contacting point with infinite magnitude. This assumption is
not applicable to the grasping of a deformable linear object
since the magnitude of the grasping forces can be determined
depending on the deformed shape of the linear object.

Let us evaluate the stability of the grasping of a deformable
linear object. The above discussion suggests that a distur-
bance force should be applied to different points on the object
to investigate whether the grasping can be performed suc-
cessfully against the disturbance force. Note that applying a
disturbance force to a deformable linear object causes defor-
mation, which may break the contact between the object and a
finger, resulting in failure of the grasp. The breakage depends
on the magnitude of the disturbance force as well as its di-
rection and action point. We can examine if the grasping can
be performed successfully by investigating whether or not the
grasping forces are involved in their corresponding friction
cones.

Let us formulate the above discussion on the grasping of
a deformable linear object. Assume that a deformable linear

object contacts withnfingers. Let P(sk)be the contacting point
between the kth finger and the object, let fff k be the contacting
force of the finger, and let FCk be the friction cone at the
contacting point. Let f and nnn be the magnitude and direction,
respectively, of a disturbance force applied to a point P(sa)
on the object. Let us apply a disturbance force fnnn at point
P(sa). Unless the magnitude of the disturbance force exceeds a
certain upper bound, the contacts at individual fingers are kept
and all contacting forces are involved in their corresponding
friction cones. In other words, the grasping can be performed
successfully against the disturbance force while its magnitude
is below the bound. Note that the upper bound depends on
direction nnn and position xxx(sa) of point P(sa). Let F(sa, nnn) be
the upper bound of magnitude f . If the magnitude exceeds
the bound, contact at a finger is lost, resulting in failure of the
grasp. Let Fmub be the smallest value of F(sa, nnn):

Fmub = min
sa

min
nnn
F (sa,nnn).

Note that the grasping can be performed successfully unless
the magnitude of a disturbance force exceeds Fmub, regardless
of the direction of the force and its action point. That is,

∀f ∈ [0, Fmub], ∀nnn s.t. ‖nnn‖ = 1,

∀sa s.t. 0 ≤ sa ≤ L,
∃fff 1 ∈ FC1, · · · ,fff k ∈ FCk, s.t.

a linear object is stable against external force fnnn

applied to the object at xxx(sa).

The value ofFmub, which is referred to as the disturbance force
margin, indicates the stability of the grasping of a deformable
linear object.

6.2. Numerical Example of Grasping Evaluation

Let us demonstrate how to compute the disturbance force mar-
gin by taking a simple example of 2D grasping of a deformable
linear object. Assume that a linear object is 100 units long and
0.1 units thick. Its flexural rigidity is assumed to be 1. Let us
evaluate the stability of the two graspings illustrated in Fig-
ure 13. In Figure 13(a), two fingers push a linear object at
both end points of the object. The object can rotate around the
end points. Let l be the distance between the two end points
of the object. Let the left end point of the initial shape be the
origin of the space coordinate system. The fingers impose the
following geometric constraints on the object:

left finger: z(0) ≥ 0, x(0) = 0,
right finger: z(L) ≤ l, x(L) = 0.

Note that inequality z(0) > 0 implies that the contact at the
left end point is lost and inequality z(L) < l shows that the
contact at the right end point is also lost. Components of a
grasping force correspond to the Lagrange multipliers for the
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Fig. 13. Two graspings of a deformable linear object.

above geometric constraints. Note that, when z(0) > 0 is
satisfied, the corresponding Lagrange multiplier is equal to
zero, which implies that the z-component of the contact force
at the left end point vanishes. When z(L) < l is satisfied,
the corresponding Lagrange multiplier is equal to zero, so
that the z-component of the grasping force at the right end
point vanishes. Let µ be the coefficient of friction between
the object and the fingers. Friction cones at the end points are
described as follows:

FC1 =
{[
cfz
fx

] ∣∣∣∣ − µfz − fx ≤ 0, −µfz + fx ≤ 0

}
,

FC2 =
{[
cfz
fx

] ∣∣∣∣ µfz − fx ≤ 0, µfz + fx ≤ 0

}
.

Thus, whether each grasping force is involved in the corre-
sponding friction cone can be examined by evaluating two
inequalities. Consequently, it can be investigated whether the
grasping is performed successfully or not. In Figure 13(b), a
pair of two fingers pinches a linear object at its center. Let the
center point of the initial shape be the origin of the space co-
ordinate system. The fingers impose the following geometric
constraints on the object:

top finger: z(L/2) = 0, x(L/2) ≤ 0,
bottom finger: z(L/2) = 0, x(L/2) ≥ 0.

We can then determine whether or not the grasping is per-
formed successfully by the above procedure.

When a disturbance force is imposed on a linear object
at point P(sa), the curvature may change discontinuously at
this point. This implies that not all differential geometry co-
ordinates can be approximated by a linear combination of
continuous basic functions. Thus, each differential geometry
coordinate will be approximated by two combinations. That is,
two coefficient vectors will be introduced to approximate each
coordinate. For example, coordinate θ(s) is approximated as
follows:

θ(s) =
{
aaaθ
l
· eee(s) (s ≤ sa)

aaaθ
r
· eee(s) (s ≥ sa)

where

θ(sa) = aaaθ
l
· eee(sa) = aaaθ

r
· eee(sa).

This equation imposes a continuity condition on coordinate
θ(s). Let aaal and aaar be collective vectors consisting of coef-
ficient vectors corresponding to the left and right parts, re-
spectively. Potential energy is the sum of the energy of the
left part, which is described by aaal , and the energy of the right
part, which is described by aaar . For example,

Uflex(aaal,aaar) = 1

2

sa∫
0

Rf κ
2(aaal) ds + 1

2

L∫
sa

Rf κ
2(aaar) ds.

Work done by a disturbance force is formulated as follows

W = fff dist · {xxx(sa)− xxx0(sa)}
where fff dist denotes the disturbance force at point P(sa) and
xxx0(sa) is the initial position of the point. Potential energy U
and workW are included in eq. (13). The deformed shape can
be computed by solving a constrained optimization problem
with respect to the collective vectorsaaal andaaar under continuity
conditions of differential geometry coordinates at point P(sa).

Let us compute the stability of the two graspings illustrated
in Figure 13. We will evaluate the first grasping at l = 0.95L,
0.80L, and 0.60L. The magnitude of the initial grasping force
is correspondingly given by r0 = 1.02 × 10−3, 1.10 × 10−3,
and 1.24 × 10−3. We will evaluate the second grasping at the
same values of the magnitude r0 = 1.02 × 10−3, 1.10 × 10−3,
and 1.24 × 10−3. Figure 14 illustrates the shape of a linear
object deformed by a disturbance force. It takes, on average,
25 s to compute one of the deformed shapes shown in the
figure. Figure 14(a) corresponds to the first grasping at r0 =
1.10 × 10−3. A disturbance force with sa = 0.5L and nnn =
[ −1/

√
2, 1/

√
2 ]T is applied to the object. Let us compute the

deformed shapes when f = 0.0×10−3, 1.4×10−3, 1.7×10−3,
and 2.0 × 10−3. As shown in the figure, contact at the right
end point is lost when the magnitude of the disturbance force
exceeds 1.4 × 10−3. Figure 14(b) corresponds to the second
grasp at r0 = 1.10 × 10−3. A disturbance force with sa =
0.75L and nnn = [ −1/

√
2, 1/

√
2 ]T is applied to the object.

Contact between the object and the fingers is maintained even
if the magnitude of the disturbance force reaches 2.0 × 10−3.
In this grasping, a deformed shape maintains contact at all
grasping points for any magnitude of the disturbance force.
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Fig. 14. Object shapes deformed by disturbance force.
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Fig. 15. Relationship between disturbance force margin and friction coefficient.

This implies that the normal reaction force at each point is
positive but does not imply that the tangential force lies within
the maximum friction force.

After computing the deformed shape and contact forces at
grasping points, we can compute the disturbance force margin
by examining if each computed contact force is involved in the
friction cone at each point. Figure 15 shows the relationship
between the disturbance force margin Fmub and the coefficient
of friction µ. We have applied disturbance forces of three dif-
ferent magnitudes, at nine action points, and in nine directions
to obtain the relationship at each grasping. This means that
it takes about 100 minutes to plot each graph in the figure.
The figure shows that the second grasping is more stable than
the first grasping. Furthermore, larger values of friction coef-
ficient µ and initial grasping force r0 increase the stability in
each grasping.

7. Deformation Path Planning in Linear Object
Manipulation

7.1. Description of Deformation Path

In the manipulation of a deformable linear object, the object is
often deformed from one shape into another. Let us determine
an appropriate deformation path from an initial shape to a goal

shape. It is generally required to deform a linear object with
little damage to the object. Excessive potential energy of a
linear object can be easily transformed into kinetic energy
by a small disturbance force, in which case the shape of the
object may become unstable and change dynamically. Thus,
the potential energy of a linear object should be small during
its deformation process. It is found that a deformation path
that minimizes the value of the potential energy maximum is
preferable.

Recall that the deformation of a linear object can be de-
scribed by coefficient vectors corresponding to Eulerian an-
gles and extensional strain. Let aaa be a collective vector of
these coefficients. One deformation corresponds to a point in
coefficient space. The deformation process of a linear object
is then given by a path in the coefficient space. Let aaa0 and
aaa1 be the initial and goal deformations, respectively, and let
aaa(k) (0 ≤ k ≤ 1) be a path from the initial deformation
to the goal deformation. Note that functions 1 − k, k, and
ki(1−k) (i = 1, 2, · · · ) are a set of bases of a function space.
Then, any path can be approximated by a linear combination
of these basic functions

aaa(ccc, k) = (1 − k)aaa0 + kaaa1 +
∞∑
i=1

cccik
i(1 − k)
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Fig. 16. Example of planar operation of linear object.

where ccc1–ccc∞ are expansion coefficients. Any path can be rep-
resented by an infinite number of coefficient vectors: ccc1–ccc∞.
Let ccc be a collective vector consisting of these coefficient vec-
tors, which is referred to as the deformation path vector. The
deformation path vectorccc determines a deformation path from
the initial deformation aaa(ccc, 0) = aaa0 to the goal deformation
aaa(ccc, 1) = aaa1. Vector aaa(ccc, k) corresponds to an intermediate
deformation along the path.

Let U(ccc, k) be the potential energy of a linear object with
deformation aaa(ccc, k). Let Umax(ccc) be the maximum of the po-
tential energy along a deformation path represented by ccc:

Umax(ccc) = max
0≤k≤1

U(ccc, k).

Recall that geometric constraints imposed on an object can
be described by a set of functions of vector ccc. Consequently,
it is found that the optimal deformation path can be derived
by minimizing the functionUmax(ccc) under the geometric con-
straints.

7.2. Example of Deformation Path Planning

Let us show a numerical example in order to demonstrate how
the deformation path is computed by our approach. Figure 16
shows an example of a planar operation. The initial deforma-
tion of a linear object is shown in Figure 16(a) and its goal
deformation is given in Figure 16(b). In this example, it is
assumed that a linear object has no torsional deformation and
that its gravitational energy is negligible. Namely, the poten-
tial energy consists of flexural energy alone: U = Uflex . In
other words, angles φ and ψ are constantly zero, implying
that the linear object is deformed in a plane.

The angle of the left end point of the object is fixed. The
object must avoid an obstacle illustrated in the figure. Thus,
geometric constraints imposed on the object are represented
as follows:

θ(0, k) = 0, ∀ k ∈ [ 0, 1 ],
z(s, k) ≤ 0.8, ∀ { s | −0.2 ≤ x(s, k) ≤ 0.2 },
∀ k ∈ [ 0, 1 ].

Let us approximate a deformation path by the first five terms:

aaa(ccc, k) = (1 − k)aaa0 + kaaa1 +
3∑
i=1

cccik
i(1 − k).

The deformation path vector ccc then consists of a finite num-
ber of vectors: ccc1, ccc2, and ccc3. Figure 17 shows the computed
optimal deformation path. It takes 8 s to compute the optimal
deformation path shown in the figure. The right side of the
object is first guided downward from the initial location, then
moved upward, and finally moved downward to the goal lo-
cation. The position and orientation of the right end point are
plotted in Figure 18.

Let us verify if the optimal deformation path can be per-
formed by controlling the position and orientation of the right
end point of a linear object. Thus, let us compute a deforma-
tion path of a linear object when the position and orientation
of its right end point are given as plotted in Figure 18. This
path is referred to as a feasible deformation path. The optimal
and feasible deformation paths are plotted in Figure 19. The
two paths coincide with each other well. Namely, this optimal
path can be performed by controlling the location of the right
end point alone in this example. The experimental result is
also plotted in the figure. The deformation of a sheet of vinyl
chloride 100 mm long, 12 mm wide, and 0.5 mm thick has
been measured. The experimental result agreed well with the
computed feasible deformation path. In this example, the op-
timal path was performed by controlling the location of the
right end point of the object.

Generally, the optimal path may not be performed by con-
trolling one end point of a linear object. A set of control points
may be needed to perform the optimal path within a given
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Fig. 18. Motion of right end point in optimal deformation path.

approximation. Feasibility can be examined by simulating a
deformation path performed by the set of control points.

8. Concluding Remarks

We have described a modeling approach for linear object de-
formation based on an extension of differential geometry and
its applications to grasping and deformation path planning.
First, we reformulated the description of linear object defor-

mation within the context of differential geometry to obtain a
clearer mathematical expression. We redefined curvature and
torsional angle so that any expression of the rotation matrix
could be applied to the reformulated description. Secondly,
we have presented deformation computations for linear ob-
jects to demonstrate the feasibility of the proposed modeling
approach. We have shown that the developed model can sim-
ulate kinking and asymmetric deformation under gravity. One
drawback of the proposed model is the relatively long com-
putation time: 10–40 s per deformation. This was caused by
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Fig. 19. Optimal deformation path, feasible deformation path, and experimental result.
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the optimization calculus, which is essential in energy-based
static modeling. Next, we compared computational and ex-
perimental results. We have found that the difference was 1%
in 2D deformation if the gravity is negligible while it went
up to 7% otherwise, and it exceeded 6% in 3D deformation.
This difference may be due to the discrepancy of parameters
including rigidities and orientation angles at either end point.
Finally, we demonstrated that the proposed method can be
employed for manipulative operations of deformable linear
objects, such as grasping and deformation path evaluation.
We have proposed the disturbance force margin to evaluate
the stability of the grasping. The proposed method has been
successfully applied to the computation of the margin. Also,
it has been successfully applied to computation of the optimal
deformation path.

The proposed approach is applicable to manipulative oper-
ations of a linear object including its self-interference. Thus,
we will use it to describe knotting and raveling manipula-
tion of a linear object. Identification of physical parameters
and boundary conditions at operational points presents a chal-
lenge which, if met, would improve the model accuracy. In
this paper, we have developed static modeling of linear object
deformation. Future research will include a study on dynamic
modeling of linear object deformation based on differential
geometry.
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