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Abstract

Here, we propose a planning method for knotting/unknotting of de-
formable linear objects. First, we propose a topological description
of the state of a linear object. Second, transitions between these
states are defined by introducing four basic operations. Then, possi-
ble sequences of crossing state transitions, i.e. possible manipulation
processes, can be generated once the initial and the objective states
are given. Third, a method for determining grasping points and their
directions of movement is proposed to realize derived manipulation
processes. Our proposed method indicated that it is theoretically
possible for any knotting manipulation of a linear object placed on
a table to be realized by a one-handed robot with three translational
DOF and one rotational DOF. Furthermore, criteria for evaluation
of generated plans are introduced to reduce the candidates of manip-
ulation plans. Fourth, a planning method for tying knots tightly is es-
tablished because they fulfill their fixing function by tightening them.
Finally, we report knotting/unknotting manipulation performed by a
vision-guided system to demonstrate the usefulness of our approach.

KEY WORDS—linear objects, deformable, manipulation,
planning, knotting, unknotting, tightening

1. Introduction

People have been using knots since the Paleolithic era. In
the past, knots were needed to fix structures made of timber
and stones. They have always been especially important in
sailing, for raising and trimming sails, mooring, etc., and me-
dieval European sailors had to know how to tie various knots.
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Knots were developed more than 1,000 years earlier in China
than in Europe. The Chinese knots have a three-dimensional
and symmetrical structure, and are not only practical but also
decorative. Such Chinese knots were introduced into ancient
Korea and Japan. Feudal warlords in Japan practiced tea cere-
mony, and their tea powder was stored in pots. To prevent the
danger of poisoning by an assassin, complex knots were devel-
oped for sealing these pots. Only a trusted manager knew how
to tie/untie the sealing knot and he/she would easily notice if
the shape of the knot had been changed. Various decorative
knots have since been derived from these secure knots, and
are still used in tea ceremony or in incense burning. Knots
were also used instead of letters or figures in some ancient
civilizations, for example, in the Inca Empire.

Nowadays, we use several types of knot, to fasten clothes
or shoes, to wrap gifts, for sewing, camping, angling, and
climbing. In the apparel industry, knots are used to attach
buttons, beads, or sequins onto clothes. In the medical field,
they are essential for suturing or ligating organs and tissues.
Moreover, in the Japanese food industry, they are used for
bindingkinchaku—a fried bean-curd pouch stuffed with rice
cake or diced vegetables—orkobumaki—roe or filleted fish
rolled with kelp—with gourd shavings.

Thus, knots are “tied” closely to our life and culture, and
many types of knot have been developed in different parts of
the world (Budworth 2002). Tying such knots requires dex-
terity; for example, to tie a bowknot, we manipulate a linear
object using several fingers of both hands, bending, twisting,
holding, and binding it. However, such procedure is depen-
dent on our physical structure and experience, and many other
procedures may exist. Modeling of knotting/unknotting pro-
cesses of a linear object would be useful for analyzing the
human dexterity involved in these processes. Furthermore,
such modeling will be useful to design a knotting/unknotting
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system with mechanisms different from those used by the
human arms/hands. In this paper, a planning method for knot-
ting/unknotting of deformable linear objects is proposed.

First, a topological description of the state of a linear ob-
ject is given. The topological states can be represented as finite
crossing states, including the sequence of crossings and their
properties. Second, transitions between the states are defined
by introducing four basic operations. A state transition cor-
responds to a basic operation changing the number of cross-
ings or permuting their sequence. Then, possible sequences
of crossing state transitions, i.e., possible manipulation pro-
cesses, can be generated once the initial and the objective
states are given. Third, a method for determining grasping
points and their directions of movement is proposed to real-
ize the derived manipulation processes. Furthermore, criteria
for evaluation of generated plans are introduced to reduce
the number of candidate manipulation plans. Fourth, a plan-
ning method for tying knots tightly is established because
knots fulfill their fixing function only when tight. Finally,
we describe knotting/unknotting manipulation performed by
a vision-guided system to confirm the usefulness of our
approach.

1.1. Related works

There has been a great deal of research regarding the model-
ing of linear object deformation; FEM, a particle-based ap-
proach, the Cosserat theory, and differential geometry have
been applied. The deformed shape of a thread suspended by
two points has been analyzed using calculus of variations, and
shown to be described by a catenary (Irvine 1981). The de-
formation of clothes has also been described using catenaries
(Weil 1986). These approaches, however, ignore the mate-
rial properties, and consider only the mass. The deformed
shape of threads in a fabric has been described geometri-
cally (Leaf 1960). In computer graphics, the particle-based
approach has been applied to simulate the motion of hairs.
Rosenblum et al. (1991) described flexure and extension of
hairs, while Daldegan et al. (1993) described flexure and tor-
sion of hairs, implying that flexure, torsion, and extension of
a linear object can be described using the particle-based ap-
proach. Recently, a fast algorithm was introduced to describe
linear object deformation using the Cosserat formulation (Pai
2002). Cosserat elements possess six degrees of freedom—
three for translational displacement and three for rotational
displacement. Flexure, torsion, and extension of a linear ob-
ject can be described using Cosserat elements. In differential
geometry, curved lines in 2D or 3D space have been studied to
describe their shapes mathematically (Gray 1993). Moll et al.
(2005) have proposed a method to compute the stable shape
of a linear object under some geometrical constraints quickly
based on differential geometry. It can be applied to path plan-
ning for flexible wires. Kinematic and dynamic modeling of a
hyper-redundant/hyper-flexible manipulator, such as a cable,

have been proposed using differential geometry (Chirikjian
and Burdick 1994; Mochiyama and Suzuki 2003). Differen-
tial geometry can describe flexure of a linear object, but not
extension along or torsion around the object. We established
an alternative modeling method based on an extension of dif-
ferential geometry (Wakamatsu et al. 2004), which describes
linear object deformation according to four functions: flexure
expressed by two functions, torsion, and extension.

In the medical field, modeling not only of organs/tissues
but also of sutures, needles, and catheters is important for
simulation of surgery. Spline-based modeling has been ap-
plied to the real-time simulation of soft tissues as well as
sutures in surgery (Kühnapfel et al. 2000). Nienhuys and van
der Stappen (2004) have proposed a computational method
for simulating needle insertions considering stick-slip friction
between the needle and tissue. As needles have beveled (i.e.,
asymmetrical) tips, they may bend during insertion. Webster
et al. (2004) have modeled this needle bending using a bicycle
with a fixed front wheel angle as a nonholonomic model.

Planning methods for deformable linear object manipula-
tion have been proposed (Henrich and Wörn 2000). Insertion
of a wire into a hole has been analyzed using a beam model of
the wire to derive a strategy to perform the insertion success-
fully (Zheng et al. 1991; Nakagaki et al. 1997). Sensor-based
dynamic insertion of a wire has been investigated (Yue and
Henrich 2002). Inverse problems in the manipulation of a lin-
ear object have been solved using an object model computed
in parallel on a cluster system (Remde and Henrich 2000). The
majority of manipulative tasks, including grasping and assem-
bly, are performed through mechanical contact. As rigid ob-
ject manipulation can be represented as a sequence of finite
contact states, planning methods using contact state graphs
have been studied (Lozano-Pérez et al. 1984; Desai and Volz
1989). These methods have been applied to the planning of
manipulation or assembly. Recently, there has been interest in
the development of a systematic approach to the planning of
deformable object manipulation. A qualitative representation
method of thin object manipulation in 2D space was proposed
based on the contact state of a thin object (Wakamatsu et al.
2001). This method can be applied to linear object manipula-
tion in 2D space. Henrich et al. (1999) andAcker and Henrich
(2005) classified the contact state of a linear object in 3D space
to describe its assembly/disassembly tasks.

Knot tying is a linear object manipulation task with certain
characteristics. Phillips et al. (2002) have simulated knot ty-
ing in a rope using a particle-based model of the rope. In the
present study, the loosely knotted shape of a rope was given as
the initial state and its tightening was simulated. Knots have
been studied in the field of mathematics, and knot theory pro-
vides a topological classification and description of knots of a
thread (Adams 1994). This classification and description are
useful for the analysis of knots, but it considers only looped
threads. Ladd and Kavraki (2004) developed an untangling
planner for mathematical knots represented as closed piece-
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wise linear curves. Knotting manipulation by robots has been
studied. Inoue and Inaba (1984) reported tying a knot in a
rope with a manipulator utilizing visual feedback. Hopcroft
et al. (1991) devised an abstract language to express various
knotting manipulations and performed knot-tying tasks with a
manipulator without detailed trajectory input. Matsuno et al.
(2001) realized a task consisting of tying a cylinder with a
rope with a dual manipulator system identifying the rigid-
ity of the rope from visual information. In these studies, the
method for tying the knot is given in advance. To tie an over-
hand knot, we first form a loop in a linear object and then
pass one endpoint through the loop. Such procedures for ty-
ing were given in the above studies. Morita et al. (2003) have
been developing a system for knot planning from observation
of human demonstrations. In this study, plans could not be de-
rived automatically; human demonstrations were required for
task planning, and derived plans were dependent on human
physical structure and experience.

The planning method proposed here is based on knot the-
ory, but we extend it to real knots. Mathematical knots are
looped and do not have any endpoint. They are topologically
categorized by the number of crossings and their properties.
The topology of any knot never changes unless it is cut, gen-
erated/deleted crossings, and reconnected again. In the case
of real knots, their shape also can be represented topolog-
ically using crossings. However, they have two endpoints.
This means that they can deformed not only keeping but also
changing their topology. Tying a knot in an unlooped rope
corresponds to changing the topology of the rope. Therefore,
we have to consider state transitions with topological change.
Moreover, we focused not only on state transitions but also on
actions that realize such state transitions. All possible knot-
ting/unknotting plans can be derived on a computer once the
initial and the objective states of a linear object are given, and
are independent of human physical structure and experience.
Thus, we can select a suitable plan for a manipulating system
even if the system does not have the same mechanisms as
the human body. In this paper, we also discuss planning for
tightening knots. Some knots can be untied by simply pulling
both endpoints. Tightening operations are also indispensable
to complete knots. Consequently, our proposed method will
be useful for actual planning of knotting/unknotting manipu-
lation of linear objects.

2. Representation of Knotting/Unknotting
Process

2.1. Crossing States

This section describes a topological representation of knot-
ting/unknotting processes of a linear object. Let us investigate
the process of tying an overhand knot in the linear object illus-
trated in Figure 1. The linear object in the initial state shown
in Figure 1(a) should be tied in the overhand knot shown in

Figure 1(e-1). The object has two endpoints, the left El and
the right Er . Successful tying of an overhand knot requires
two consecutive operations. First, the object must be changed
from the unlooped state into the looped state illustrated in Fig-
ure 1(b). Next, an endpoint must be passed through the loop
as shown in Figure 1(c-1), and pulled to tie the object as illus-
trated in Figure 1(e-1). In each state, the object is crossed in
a certain fashion, for example, the looped state in Figure 1(b)
has one crossing, while the overhand knot in Figure 1(e-1) has
three. In addition, the number of crossings increases during a
successful tying process. Tying may fail due to inappropriate
operations, for example, passing one endpoint of the object
through the loop in Figure 1(c-2) yields the failed state in Fig-
ure 1(e-2). Note that the number of crossings may decrease
during an unsuccessful tying process, for example, the inter-
mediate state, in Figure 1(d-2), has two crossings, while the
unsuccessful final state, in Figure 1(e-2), has only one. Two
intermediate states, Figure 1(d-1) and Figure 1(d-2), have two
crossings and the left part of the object is below the right part
at crossing C1. However, the right part of the object is below
the left part at C2 in Figure 1(d-1), while the right part is above
the left part at C2 in Figure 1(d-2). This suggests that it is nec-
essary to specify which part is above/below at each crossing
to describe the states during the knotting/unknotting process.

To describe the crossing states of a deformable linear
object, it is first necessary to project the three-dimensional
shape of the linear object onto a plane. The projected two-
dimensional curve may cross itself. Crossings in the projected
curve specify the crossing state.

Next, we trace the projected curve from the left endpoint
El to the right endpoint Er , which is defined ascounting direc-
tion, and number the crossings passed first. The sequence of
the crossings in the counting direction can then be described.
Figure 2 shows an example of a linear object tied in a slipknot.
The object has 5 crossings C1 through C5 and their sequence
is denoted as:

El − C1 − C2 − C3 − C4 − C5 − C1 − C2 − C5 − C4

− C3 − Er . (1)

In addition, whether each crossing is involved in the upper
or the lower part is specified. The symbols Cu

i
and Cl

i
denote

the location of thei-th crossing point in the upper and the
lower part, respectively. Furthermore, the crossings can be
categorized as left-handed helical or right-handed helical, as
in Figure 3(a) and Figure 3(b), respectively. In a left-handed
helical crossing, the upper part overlaps first on the right side
of the lower part and then overlaps on its left side. Conversely,
in a right-handed helical crossing, the upper part first overlaps
on the left side of the lower part and then overlaps on its right
side. The symbols C−i and C+

i represent left- and right-handed
helical thei-th crossing, respectively.

The sequence of symbols at individual crossing points de-
termines the crossing states of a linear object. The crossing
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Fig. 1. Tying of overhand knot.

state of a knotted object shown in Figure 2(a) is described as:

El − Cu−
1 − Cl−

2 − Cl+
3 − Cu+

4 − Cu−
5 − Cl−

1 − Cu−
2

− Cl−
5 − Cl+

4 − Cu+
3 − Er . (2)

Let us describe a segment between two crossings Ci and
Cj asp

i Lq

j , wherep andq indicate whether the segment at the
crossings is the upper (p, q = u) or lower part (p, q = l).
The knotted object shown in Figure 2(b) has 11 segments. For
example, the second segment between crossing points Cu−

1 and
Cl−

2 is denoted asu1L
l
2. Terminal segments adjoining the left

and right endpoints are described as Lp

i andq

j L, respectively.
Consequently, we can represent the crossing states of a

knotted linear object by a sequence of crossing point symbols.

This representation is topological; no geometric properties,
such as length and thickness, or physical properties, such as
weight and rigidity, are included.

2.2. Basic Operations for Crossing State Transitions

In this section, we introduce the basic operations that perform
the transitions between crossing states of a knotted object. To
change the crossing state of a linear object, an operation must
be performed on the object. Therefore, a state transition cor-
responds to an operation that changes the number of crossings
or permutes their sequence. In this paper, we introduce four
basic operations described in Figure 4. Operations I, II, and
III are equivalent to Reidemeister moves I, II and III in knot
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Fig. 2. Example of knotted linear object.

right side
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right side

(a) left-handed helical crossing (b) right-handed helical crossing

Fig. 3. Crossing type.

theory, respectively (Adams 1994). It has been demonstrated
that any looped knot can be changed to topologically equiva-
lent knots with these three moves alone (Reidemeister 1983).
Operations I, II, and III are applied to intermediate parts of
a linear object, while operation IV manipulates the endpoint
of the object. Operation IV is needed because a linear object
has two endpoints, while knot theory does not focus on any
unlooped knot with endpoints. Operation IV corresponds to
a topological change of a knot in the knot theory: cutting a
looped knot, generating/deleting a crossing, and reconnecting
one endpoint with the other. Consequently, any state transition
corresponding to both a topologically equivalent change and
a topological change can be realized by operations I through
IV. Operations I, II, and IV increase or decrease the number
of crossings. Let us divide operation I into crossing operation
COI which increases the number of crossings and uncrossing
operation UOI which decreases the number. Crossing opera-
tions COII and COIV and uncrossing operations UOII and UOIV

are also defined. Operation III does not change the number of
crossings but permutes their sequence. Operation III is re-
ferred to as an arranging operation AOIII .

Each basic operation can be applied to specific subse-
quences of crossings. Let us investigate subsequences to
which each operation is applicable. Operation UOI is appli-
cable to subsequences represented as follows:

· · · − Cu

i
− Cl

i
− · · · , (3)

· · · − Cl

i
− Cu

i
− · · · . (4)

That is, two crossing points corresponding to one crossing, Ci ,
should be adjacent to each other in applying UOI. Operation
UOII is applicable to subsequences described as follows:

· · · − Cu

i
− Cu

j
− · · · − Cl

i
− Cl

j
− · · · , (5)

· · · − Cu

i
− Cu

j
− · · · − Cl

j
− Cl

i
− · · · , (6)

· · · − Cl

i
− Cl

j
− · · · − Cu

i
− Cu

j
− · · · , (7)

· · · − Cl

i
− Cl

j
− · · · − Cu

j
− Cu

i
− · · · . (8)

That is, two upper crossing points, Cu
i

and Cu
j
, should be ad-

jacent to each other and the corresponding lower crossing
points, Cl

i
and Cl

j
, should also be adjacent to each other. Op-

eration UOIV is applicable to subsequences represented as fol-
lows:

El − Cu

i
− · · · − Cl

i
− · · · , (9)

El − Cl

i
− · · · − Cu

i
− · · · , (10)

· · · − Cl

i
− · · · − Cu

i
− Er , (11)

· · · − Cu

i
− · · · − Cl

i
− Er . (12)

That is, a crossing adjacent to the endpoint can be deleted
by operation UOIV . Operation AOIII is applicable to subse-
quences represented as permutations of the following three
subsequences:αi , βi , andγi , e.g.,· · · −β1−γ2−α1−· · · :

α1 : · · · − Cu
i
− Cu

j
− · · · ,

α2 : · · · − Cu
j
− Cu

i
− · · · , (13)
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Fig. 4. Basic operations.

β1 : · · · − Cl
j
− Cu

k
− · · · ,

β2 : · · · − Cu
k
− Cl

j
− · · · , (14)

γ1 : · · · − Cl
i
− Cl

k
− · · · ,

γ2 : · · · − Cl
k
− Cl

i
− · · · . (15)

That is, three crossings consisting of three segments one
of which overlaps with the others can be permuted by op-
eration AOIII . Uncrossing operations UOI, UOII , and UOIV

and arranging operation AOIII are applicable to their specific
crossing subsequences indicated above. On the other hand,
crossing operations COI, COII , and COIV can be applied to
any sequence. Consequently, the number of possible cross-
ing operations from one crossing state can be larger than that
of possible uncrossing operations. For example, in the state

shown in Figure 4(a-2), one UOI operation deletes the cross-
ing Ci , and three COI operations generate a new crossing,
which is generated in segmentsp

j L l
i
, l

i
Lu

i
, or u

i
Lq

k wherej andk

are the previous and the subsequent crossing number, respec-
tively. Thus, generation of possible transitions from a crossed
to an uncrossed state is more effective than that from an un-
crossed to a crossed state because larger numbers of possible
states/operations must be considered in the latter. In this study,
a state transition network was generated from a crossed to an
uncrossed state. Note that all uncrossing operations applica-
ble to each crossing state are included in the graph, while
some possible crossing operations, which can be derived by
inversing uncrossing operations, are not.

Each transition denotes a crossing/uncrossing operation.
The knotting process can be represented as a sequence of
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transitions from an uncrossed to a crossed state, while the un-
knotting process can be described as the inverse—a sequence
of transitions from a crossed to an uncrossed state. Once the
initial crossing state and the objective crossing state are given,
it is possible to generate possible sequences of transitions, i.e.,
possible knotting/unknotting processes.

In this paper, we assume that any linear object has two
endpoints. Then, any crossing state description includes sub-
sequences described in eqs. (9) through (12) whenever a linear
object crosses itself. This implies that any unknotting process
can be represented by iteration of operations UOIV alone. It
also means that any knotting process, i.e., the inverse of any
unknotting process, can be represented by iteration of opera-
tions COIV alone. Recall that we often search for an endpoint
and manipulate it to unravel a self-entwined rope. This leads
to the following theorem:

THEOREM 1. Any knotting/unknotting manipulation of a
linear object can be realized by iteration of operations
COIV /UOIV alone.

3. Planning of Knotting/Unknotting
Manipulation

3.1. Actions for Uncrossing Operations

In the previous section, the knotting/unknotting process of
a linear object was represented as a sequence of crossing
state transitions. Moreover, we found that possible knot-
ting/unknotting processes can be generated once the initial
and the objective states are given. To accomplish one of the
possible processes, it is necessary to grasp, move, and release
the object during knotting/unknotting. Whether the crossing
state of the object changes as expected is dependent on the
points grasped and their directions of movement, including
the direction of approach of a manipulator to each grasping
point. We investigated a qualitative plan for manipulation as
a sequence of crossing state transitions, including grasping
points, their directions of movement, and their directions of
approach, which is referred to as aqualitative manipulation
plan, to realize a possible process. In this section, we explain
the procedure used to determine adequate grasping points,
their directions of movement, and their directions of approach
for one state transition.

Let us define crossings that are generated/deleted by a
crossing/uncrossing operation astarget crossings. A single
target crossing consists of twotarget points: an upper target
point and a lower target point. We define a segment between
two target points in operations UOI and UOII as atarget seg-
ment. In the case of the operation UOIV , a segment between
the target point and the endpoint is defined as a target seg-
ment. A crossed state shown in Figure 4(a-2) consists of one
crossing, C+i , and three segments,p

j L l
i
, l

i
Lu

i
, andu

i
Lq

k . Operation
UOI deletes crossing C+i , which corresponds to a target cross-

ing. Segmentl
i
Lu

i
corresponds to a target segment because it

exists between target points, Cl+
i and Cu+

i . In general, it is dif-
ficult for a manipulator to grasp only the upper/lower point at
a crossing, which corresponds to the target point. Instead, the
target segment is moved by grasping it or its adjacent segment.
Consequently, we assume that operations UOI and UOII can
be realized by grasping the target segment or both its adjacent
segments and that operation UOIV can be realized by grasping
the target segment or its adjacent segment. In the above case,
segmentl

i
Lu

i
or segmentspj L l

i
andu

i
Lq

k should be grasped.
Next, let us consider the direction of movement of a grasp-

ing point required to realize each operation. Assume that
a pair of fingertips grasps a linear object during its knot-
ting/unknotting. Once the fingertip pair grasps the object
firmly, it can be regarded as a rigid body. Generally, a rigid
body in 3D space has 3 DOF in translation and 3 DOF in ro-
tation. We apply 3 DOF in translation and 3 DOF in rotation
to the knotting/unknotting of a linear object. Let us define the
central axis of a linear object as axis 1, the axis perpendicular
to the central axis and along the projection plane as axis 2,
and the axis parallel to the projection normal as axis 3. Trans-
lations along axis 1, axis 2, and axis 3 are referred to asT1,
T2, andT3, respectively. Rotations around axis 1, axis 2, and
axis 3 are referred to asR1, R2, andR3, respectively.

Furthermore, we define the direction of approach of a ma-
nipulator with respect to the projection plane: from the front
or from the rear. Whether each operation can be performed
is dependent on this direction. For example, in Figure 4(d-2),
we assume that a manipulator grasps a target segment,u

i
L,

and translate it along axis-1 to perform operation UOIV . The
manipulator cannot perform operation UOIV when it grasps
the target segment from the rear, while it can perform the op-
eration when it grasps from the front. Some operations can
be performed if the manipulator approaches the appropriate
segment from the front and grasps the segment, while others
can be performed if the segment is grasped from the rear. Still
other operations are unaffected by the direction of approach
of the manipulator. Figure 5 shows an example of set of grasp-
ing points, their directions of movement, and their directions
of approach to realize operation UOI. This set is referred to as
anaction in this paper. In Figure 5(a), both segments adjoin-
ing a target segment are grasped and pulled away from each
other. Then, the object state can be changed into the state
shown in Figure 5(b). Figure 6 illustrates possible actions for
each uncrossing operation. In this figure, actions before per-
forming uncrossing operations as shown in Figure 5(a) are
enumerated. The circles with a cross, circles with a dot, and
open circles represent points to be grasped from the front, the
rear, and either, respectively. We derived 34 actions to realize
uncrossing operations as listed in Figure 6.

3.2. Actions for Crossing Operations

We assume that any crossing operation can be realized by
grasping target points, target segments, or their adjacent
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(a) before operation (b) after operation

Fig. 5. Example of action for operation UOI.

(a-1) (a-2) (a-3) (a-4) (a-5) (a-6)
(a) UOI

(b-1) (b-2) (b-3) (b-4) (b-5) (b-6)

(b-7) (b-8) (b-9) (b-10)

(b-11) (b-12) (b-13) (b-14) (b-15) (b-16)

(b-17) (b-18) (b-19) (b-20)
(b) UOII

(c-1) (c-2) (c-3) (c-4)

(c-5) (c-6) (c-7) (c-8)

(c) UOIV

Fig. 6. Actions for uncrossing operations.
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(a) before operation (b) after operation

Fig. 7. Example of action for operation COI.

segments. Figure 7 shows an action to realize operation COI.
In Figure 7(a), both ends of a segment are grasped and moved
closer to each other. Then, the object is kinked and a target
crossing can be generated as shown in Figure 7(b). Thus, we
can derive 46 actions for crossing operations as enumerated in
Figure 8. These actions correspond to those after performing
crossing operations as shown in Figure 7(b).

3.3. Actions for Arranging Operation

An arranging operation does not generate/delete any cross-
ing. Let us define a segment with two upper adjacent crossing
points as an upper target segment, a segment with two lower
adjacent crossing points as a lower target segment, and a seg-
ment with one upper and one lower adjacent crossing points
as a middle target segment for operation AOIII , respectively.
Then, we can realize operation AOIII by moving one of these
three target segments. Figure 9 shows all 16 actions for opera-
tion AOIII . In Figure 9(a) through (f), an upper target segment
is moved, while a lower target segment is moved in Figure 9(g)
through (l). Moreover, in Figure 9(m) through (p), a middle
target segment is moved to realize operation AOIII .

Actions, i.e., adequate sets of grasping points, their direc-
tions of movement, and their directions of approach, to real-
ize each operation can be determined. Consequently, possible
qualitative manipulation plans, i.e. sequences of crossing state
transitions and actions for each state transition, can be gener-
ated on a computer system once the initial and the objective
crossing states of a linear object are given.

3.4. One-Handed Knotting

Possible actions for each operation illustrated in Figure 6, Fig-
ure 8, and Figure 9 include those with only a single grasping
point. Moreover, crossing operations can be realized by pla-
nar motions, i.e.,T1, T2, andR3, of a single grasping point.
Relevant actions are: Figure 8(a-1), (a-2), (a-6), and (a-7) for
operation COI; Figure 8(b-3), (b-4), (b-15), and (b-16) for
operation COII ; and Figure 8(c) except (c-5) and (c-11) for
operation COIV . Operation AOIII can also be performed by ac-
tions with planar motions of a single grasping point as shown
in Figure 9(a) and (g). Now, let us assume that a linear object
is placed on a table corresponding to the projection plane.

Manipulators can approach the object only from the front of
the projection plane. In this case, operations COI, COII , and
COIV can be accomplished by a single manipulator approach-
ing from the front. These actions are shown in Figure 8(a-1),
(a-6), (b-3), (b-16), (c-1), (c-3), (c-4), (c-6), (c-7), (c-10), and
(c-12). Operation AOIII can also be performed by a manipula-
tor approaching from the front. Thus, any crossing operation
and any arranging operation can be performed by grasping a
single point/segment from the front of the projection plane
and by imposing planar motions,T1, T2, andR3. Translation
along the projection normal, i.e.,T3, is needed to overlap the
grasping point/segment with another point/segment. Conse-
quently, the following theorem is derived.

THEOREM 2. Any knotting manipulation of a linear object
placed on a table can be accomplished by a one-handed robot
with three translational DOF and one rotational DOF.

Note that a SCARA robot is sufficient to impose motions
T1, T2, T3, andR3 on an object. Thus, one SCARA robot can
realize any knotting manipulation, and it is not necessary to
use dual 6-DOF manipulators or anthropomorphic arms.

4. Example of Manipulation Planning

4.1. Planning of Unknotting Manipulation

In this section, we describe an example of possible unknot-
ting processes generated by a computer system. Figure 10
shows a required manipulation, which corresponds to unty-
ing a slipknot. The initial state in Figure 10(a) is represented
as El−Cu−

1 −Cl−
2 −Cl+

3 −Cu+
4 −Cu−

5 −Cl−
1 −Cu−

2 −Cl−
5 −Cl+

4 −Cu+
3

−Er and the objective state in Figure 10(b) is represented as
El−Er . The initial state includes a subsequence to which oper-
ation UOII is applicable:· · · −Cu+

4 −Cu−
5 −· · · −Cl−

5 −Cl+
4 −· · · .

It also includes subsequences to which operation UOIV is
applicable: El−Cu−

1 −· · · −Cl−
1 −· · · and · · · −Cl+

3 −· · · −Cu+
3

−Er . Application of operation UOII will cause deletion of
crossings C+4 and C−

5 . Then, the crossing state of the object
is changed to El−Cu−

1 −Cl−
2 −Cl+

3 −Cl−
1 −Cu−

2 −Cu+
3 −Er . Ap-

plication of operation UOIV results in deletion of crossing
C−

1 or C+
3 . In the former case, the crossing state is changed

to El−Cl−
1 −Cl+

2 −Cu+
3 −Cu−

4 −Cu−
1 −Cl−

4 −Cl+
3 −Cu+

2 −Er after
renumbering crossings. In the latter case, the following cross-
ing state is derived: El−Cu−

1 −Cl−
2 −Cu+

3 −Cu−
4 −Cl−

1 −Cu−
2 −Cl−

4
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(a-1) (a-2) (a-3) (a-4) (a-5)

(a-6) (a-7) (a-8) (a-9) (a-10)
(a) COI

(b-1) (b-2) (b-3) (b-4) (b-5) (b-6)

(b-7) (b-8) (b-9) (b-10) (b-11) (b-12)

(b-13) (b-14) (b-15) (b-16) (b-17) (b-18)

(b-19) (b-20) (b-21) (b-22) (b-23) (b-24)
(b) COII

(c-1) (c-2) (c-3) (c-4) (c-5) (c-6)

(c-7) (c-8) (c-9) (c-10) (c-11) (c-12)
(c) COIV

Fig. 8. Actions for crossing operations.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 9. Actions for arranging operation.

(a) initial state (b) objective state

Fig. 10. Example of required manipulation—untying slipknot.

−Cl+
3 −Er . Thus, we can generate possible state transitions

from each crossing state automatically.All the following com-
putations were performed on an 833 MHz Alpha 21264 CPU
with 1 GB memory operated by Tru64UNIX. Programs were
compiled with Compaq C Compiler V6.4 with optimization
option O4. Assuming that only uncrossing operations can be
used, i.e., without operation AOIII , 14 crossing states and 39
state transitions are derived as shown in Figure 11. Computa-
tion was completed within 10 ms. Note that the state transition
graph shown in Figure 11 includes sequences consisting of
UOIV operations only, confirming the validity of Theorem 1.
Including operation AOIII , we can derive 21 crossing states
and 68 state transitions. This computation takes about 10 ms.
Figure 12 shows additional crossing states and uncrossing op-
erations when operationAOIII is included. In this figure, states
with the number less than 15 are equivalent to those with the
same number in Figure 11.As shown in these figures, possible
knotting/unknotting processes of a linear object can be gen-
erated automatically once the initial and the objective states
are given.

In general, a crossing state graph becomes huge and com-
plex when an object has many crossings and when operations
AOIII are included. For example, let us investigate the bowknot
shown in Figure 13(a), which has 11 crossings. When oper-
ation AOIII is not considered, a graph with 53 states and 153
operations is derived to untie this knot, requiring a compu-
tation time of about 15 ms. With the inclusion of operations
AOIII , the generated graph has 932 states and 4282 operations,
and it takes about 0.5 s to generate this graph. Figure 13(b)
shows a traditional Japanese decorative knots, theume-knot,
the shape of which mimics that of “ume” or Japanese plum
blossom. This knot is used for binding the mouth of tool bags
for incense burning. The ume-knot has 54 crossings. A graph
with 77796 states and 398841 operations was generated for its
untying when operation AOIII was not considered, and com-
putation time was about 22200 s (6 hours and 10 minutes).
It was not possible to compute a graph including operations
AOIII due to memory limitations. However, even if sufficient
memory were available, a very long time would probably be
needed to compute the graph including operationsAOIII . Thus,
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S1

S4

S3

S8

S9

S2

S7

S13

S12

S11

S5

5 4 3 2 1 0

UOI

UOII

UOIV

number of crossings

S10

S6

S14

Fig. 11. Results of unknotting process planning.

S12

S5

5 4 3 2 1 0

number of crossings

S9

S2

S15

S16

S17

S18

S19

S20

S21

S14

S11

UOI

UOII

UOIV

AOIII

Fig. 12. Additional states and operations when AOIII is included.
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(a) Bowknot (b)Ume-knot

Fig. 13. Complex knots.

it is preferable not to include operations AOIII to allow the
complete and efficient generation of a crossing state graph for
tying/untying of complex knots.

Here, we introduce evaluation criteria to allow the selec-
tion of appropriate qualitative manipulation plans from among
those generated. First, letNt be the number of state transitions
in one sequence. In this paper, we discuss a sequence including
fewer intermediate states as it takes more time to complete the
required manipulation when the selected sequence includes
more state transitions. Note that a knotting/unknotting pro-
cess corresponds to increase/decrease of crossings of a linear
object. Recall that operation II generates/deletes two cross-
ings, while operations I and IV generate/delete one crossing.
Then, we find that sequence that includes more iterations of
operation II has fewer intermediate states. This implies that
we should select a sequence involving more operations II and
fewer operations I and IV. Next, letNr be the number of re-
graspings in one sequence. When a grasping point remains
unchanged during manipulation, the position and direction of
the linear object at the grasping point coincide with the po-
sition and direction of the fingertip of the manipulator. Thus,
estimation of the object shape is not necessary once the ma-
nipulator grasps the object. However, if the grasping point
changes during manipulation process, the position and direc-
tion of the segment to be grasped in the next operation must
be estimated in detailed planning. Furthermore, it takes more
time to change the grasping point. Therefore, a sequence with
fewer regraspings is preferable.

In this example, the number of crossings in the initial state
is five, and that in the objective state is decreased to zero. We
can reduce the number of crossings from five to zero by ap-
plying two UOII operations and one UOI or UOIV operation.
Their possible sequences are as follows:

OQ1 : UOII → UOII → UOI/UOIV ,

OQ2 : UOII → UOI/UOIV → UOII ,

OQ3 : UOI/UOIV → UOII → UOII .

Then, we check whether the above possible sequences can re-
alize the required process. The three sequences, OQ1 through
OQ3, correspond to the following state transition sequences,
respectively:

SQ1 : S1 → S2 → S5 → S11,

SQ2 : S1 → S2 → S6 → S11,

SQ3 : S1 → S3 → S6 → S11.

If the required process cannot be realized with two UOII oper-
ations and one UOI or UOIV operation, we check whether one
UOII operation and three UOI and/or UOIV operations can re-
alize the required process. Thus, we check repeatedly whether
a knot withn crossings can be unknotted by applyingα+βCβ

combinations ofα UOII operations andβ UOI and/or UOIV

operations with decreasingα and increasingβ so that they
satisfy 2α + β = n until a sequence of operations to unknot
is found. Then, we can efficiently derive manipulation pro-
cesses including fewer state transitions, i.e., processes with
lower Nt without generating the whole graph including all
possible processes. For example, from this algorithm, it is
found that the ume-knot illustrated in Figure 11(b) can be un-
knotted by applying 27 UOII operations. The graph has 1512
states and 5113 operations, and it takes about 15 s to generate
it with the same specification of computation.

Next, we select adequate actions so that the manipulation
process has fewer regraspings,Nr . Let us consider the se-
quence SQ1. For the first transition from state S1 to state S2,
assume that segmentsu

2L
l
5 andl

4L
u
3 are grasped from the front
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u
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(d) grasping pattern 1
for S5 → S11

(e) grasping pattern 2
for S5 → S11

(f) grasping pattern 3
for S5 → S11

Fig. 14. Grasping points and their changing times.

as shown in Figure 14(a) to perform operation UOII . Then,
the grasped segments become equivalent to segmentu

2L
u
3 in

state S2 as shown in Figure 14(b). State S2 can be changed to
state S5 by moving segmentu2L

u
3. Then, segmentl1L in state

S5 is grasped from the front by two manipulators as shown in
Figure 14(c). There are three choices to change the state to
the final state, S11. The first is to regrasp segmentl

1L from the
rear for operation UOIV as shown in Figure 14(d). The second
is to release segmentl

1L and to grasp segmentu
1L

l
1 as shown in

Figure 14(e) for operation UOI or UOIV . The third is to grasp
segment Lu1 while still grasping segmentl

1L for operation UOI

as shown in Figure 14(f). It is necessary to regrasp for the
last transition from state S5 to state S11 in all choices. Con-
sequently, in the above plans to perform sequence, SQ1, the
minimum number ofNr = 1. We can also derive the mini-
mumNr for sequence SQ2 and sequence SQ3; Nr = 2 in SQ2,
while Nr = 1 in SQ3. This implies that sequence SQ2 should
be eliminated from the manipulation plans. Thus, we can se-
lect appropriate candidate manipulation plans by evaluating
Nt andNr . Then, quantitative analysis should be performed to
check whether a selected manipulation can be realized prac-
tically by taking the physical properties of the linear object,
such as rigidity, into consideration.

4.2. Planning of Knotting Manipulation

Next, we present an example of knotting process generation.
Figure 15 shows a required manipulation corresponding to
tying a slipknot, i.e., the inverse of the previous manipula-
tion example. The system generates state transition sequences
from the objective state to the initial state corresponding to
the state transition graph shown in Figure 11. The state tran-
sition graph shown in Figure 16 is derived by inversing the
uncrossing operations to corresponding crossing operations.

5. Planning for Tying Tightly

In general, knots fulfill their fixing function after they are tied
tightly by pulling on various parts of the knot. Which part
of a knot should be pulled for tightening is dependent on the
topological state of the knot.

The knot shown in Figure 17(a) corresponds to an over-
hand knot and the knot shown in Figure 17(b) corresponds to
a slipknot. The overhand knot can be tied tightly by grasping
both terminal segments of the knot, Lu

1 and l
3L, and pulling

them in opposite directions. In contrast, the knot shown in
Figure 17(c) is released if both terminal segments are pulled.
Now, let us grasp an intermediate segment in addition to the
terminal segments when pulling. For example, by grasping
segmentl5L

l
4 in addition to terminal segments Lu

1 andu
3L and

pulling these segments in opposite directions, the slipknot
shown in Figure 17(b) is then tied tightly. Let us cut the ob-
ject at a point in segmentl

5L
l
4 as shown in Figure 18(a) and

divide the object into two parts as shown in Figure 18(b) and
Figure 18(c). Let E′

r
be the new right endpoint of the left part

shown in Figure 18(b) and let E′
l
be the new left endpoint of

the right part shown in Figure 18(c). Then, the left part corre-
sponds to an overhand knot as shown in Figure 17(a). That is,
the left part can be tightened when terminal segment, Lu

1, and
segmentl5L

l
4 are pulled. Then, terminal segment,u

3L must be
fixed against the pull of segmentl

5L
l
4 to maintain the crossing

state. Consequently, we can tie the slipknot by pulling three
segments, Lu1,

l
5L

l
4, andu

3L. The knot shown in Figure 17(c)
does not include such tightenable parts even if all segments
are cut and the object is divided into many parts. This suggests
that the knot shown in Figure 17(c) can never be tied tightly.
Thus, knots can be categorized as tightenable or untighten-
able. The knots shown in Figure 17(a) and Figure 17(b) are
tightenable, while that shown in Figure 17(c) is untighten-
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(a) initial state (b) objective state

Fig. 15. Example of required manipulation—tying slipknot.
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Fig. 16. Results of knotting process planning.
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Fig. 17. Completely tightenable, partially tightenable, and untightenable knots.
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Fig. 18. Dividing of slipknot.

able. Furthermore, some tightenable knots can be tied tightly
by pulling their terminal segments alone, while others can-
not. This section describes how a knot can be tied tightly by
pulling its segments in opposite directions.

First, we define thattying tightly or tightening is to in-
finitely shorten the length of the ungrasped segments without
changing the crossing state of the object by pulling the grasped
segments. Then, the knots shown in Figure 17(a) and Fig-
ure 17(b) can be defined astightenable knots, and that shown
in Figure 17(c) can be defined as anuntightenable knot. More-
over, we define a knot that can be tightened by pulling its ter-
minal segments alone as acompletely tightenable knot. Recall
that intermediate segments in addition to terminal segments
must be pulled away to tighten the knot shown in Figure 17(b).
This knot is referred to as apartially tightenable knot. For ex-
ample, a figure-of-eight knot is a completely tightenable knot,
while a bowknot is a partially tightenable knot.

Let us define a set of closed regions surrounded by a linear
object as theinner region, and the other region in the pro-
jection plane is defined as theouter region. Some segments
of a knot touch the outer region, while other segments do
not. The former are referred to asouter segments, while the
latter are referred to asinner segments. Figure 19 shows an
example of inner and outer regions/segments. Note that we
have to pull both terminal segments of a knot as far away as
possible to achieve tightening. If the terminal segments are
inner segments, it may not be possible to pull them away suf-
ficiently without changing the crossing state. Thus, in this
section, we assume that both terminal segments are outer
segments. Cut parts of the knot as shown in Figure 18(b)
and Figure 18(c) must also have outer terminal segments for
tightenability. Therefore, segments to be pulled for tightening
a linear object can be determined by repeating a procedure
consisting of cutting some outer segments, dividing the ob-
ject into various parts, and checking tightenability of each
part, after identifying the outer segments.

First, we will explain the procedure used to detect outer
segments from the crossing state description. All outer seg-
ments are included within the boundary of the outer region

and are connected to one another continuously. Therefore, we
can detect outer segments by tracing a segment connected to
the previous outer segment and making contact with the outer
region from the left terminal segment. Let us definetracing
direction such that any segment touches the outer region on
its right side. At the start of tracing from the left endpoint,
the tracing direction is the same as the counting direction.
We trace the object, and when we encounter an upper/lower
crossing point, we switch to the other crossing point so that
the following segment touches the outer region on its right
side. The tracing direction after switching is dependent on
the crossing. If a crossing is a right-handed helical and after
switching from the upper to the lower point, we should trace
segments in the opposite of the counting direction. Table 1
shows the rule for switching at each crossing. If we arrive at
the right endpoint of the object, we turn back and continue
this examination. The procedure finishes when we return to
the left endpoint. Then, all segments traced in this procedure
correspond to outer segments. For example, the knot shown
in Figure 17(b) is described as follows:

El − Cu−
1 − Cl−

2 − Cl+
3 − Cu+

4 − Cu−
5 − Cl−

1 − Cu−
2

− Cl−
5 − Cl+

4 − Cu+
3 − Er . (16)

Then, we can trace segments Lu
1,

l
1L

u
2,

l
2L

l
3,

u
3L, l

3L
u
4,

l
5L

l
4, and

u
5L

l
1 as outer segments, and it is possible to confirm that these

are outer segments from Figure 19. Thus, we can detect outer
segments of a linear object from the crossing state description.
To check for partial tightenability, we cut these outer segments
alone.

Next, let us describe a procedure to check tightenability.
Note that a completely tightenable knot can be tied by pulling
both terminal segments alone. If it can be unknotted by the
operation UOI or UOII , its crossing state can change even
if both terminal segments are grasped. This implies that a
completely tightenable knot does not include any subsequence
given in eqs. (3) through (8). We can check whether a knot is
completely tightenable from its crossing state description. If
the knot is not completely tightenable, we then check whether
it is a partially tightenable knot.
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: Inner regions
: Outer region

: Inner segments
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Fig. 19. Example of inner and outer region/segments.

Table 1. Rule for Switching at Crossing

Previous Next
Direction Crossing Direction

Same Right-handed lower→ upper same
helical upper→ lower opposite

Left-handed lower→ upper opposite
helical upper→ lower same

Opposite Right-handed lower→ upper opposite
helical upper→ lower same

Left-handed lower→ upper same
helical upper→ lower opposite

We cut outer segments of the knot and divide it into various
parts. Upper/lower crossing points in one part can be deleted
if their corresponding crossing points are included in another
part. Then, if at least one part has crossings with itself and if
any part does not include any subsequence to which operation
UOI/UOII can be applied, the knot is partially tightenable and
cut segments are pulling segments. The knot is untightenable
if the above conditions are not satisfied even if all segments
are cut. For example, the knot shown in Figure 17(b) includes
a subsequence,· · · −Cu

4−Cu
5−· · · −Cl

5−Cl
4− · · · , which cor-

responds to a subsequence given in eq. (6). Thus, the knot is
not completely tightenable. Recall that outer segments of this
knot are Lu1,

l
1L

u
2,

l
2L

l
3,

u
3L, l

3L
u
4,

l
5L

l
4, andu

5L
l
1. The two parts, P11

and P12, obtained after cutting segmentu
5L

l
1 are described as

follows:

P11 : El − Cu−
1 − Cl−

2 − Cl+
3 − Cu+

4 − Cu−
5 − E′

r

⇒ El − E′
r
, (17)

P12 : E′
l
− Cl−

1 − Cu−
2 − Cl−

5 − Cl+
4 − Cu+

3 − Er

⇒ E′
l
− Er . (18)

Neither part has any crossing. Thus, segmentu
5L

l
1 is not a

pulling segment for tightening. The two parts, P21 and P22,
produced by cutting segmentl

1L
u
2 can be described as follows:

P21 : El − Cu−
1 − Cl−

2 − Cl+
3 − Cu+

4 − Cu−
5 − Cl−

1 − E′
r

⇒ El − Cu−
1 − Cl−

1 − E′
r
, (19)

P22 : E′
l
− Cu−

2 − Cl−
5 − Cl+

4 − Cu+
3 − Er

⇒ E′
l
− Er . (20)

As part P21 can be unknotted by applying operation UOI to
segmentu1L

l
1, segmentl1L

u
2 is not a pulling segment either. The

two parts produced by cutting segmentl
5L

l
4 are described as

follows:

P31 : El − Cu−
1 − Cl−

2 − Cl+
3 − Cu+

4 − Cu−
5 − Cl−

1

− Cu−
2 − Cl−

5 − E′
r
⇒ El − Cu−

1 − Cl−
2 − Cu−

5

− Cl−
1 − Cu−

2 − Cl−
5 − E′

r
, (21)

P32 : E′
l
− Cl+

4 − Cu+
3 − Er

⇒ E′
l
− Er . (22)
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(a) normal shape (b) simplified shape

Fig. 20. Bowknot.

Part P31 does not include any subsequence described by eqs.
(3) through (8), suggesting that the knot is partially tightenable
and can be tied tightly by pulling segments Lu

1,
l
5L

l
4, andu

3L.
Moreover, part P31 is tightenable and part P32 is regarded as
a simple segment. This means that both terminals of part P31,
i.e., segments Lu1 andl

5L
l
4 must be pulled away from each other

to tighten this knot, while segmentu
3L is only fixed so that the

crossing state does not change. Thus, we can derive how to
tighten a knot from the crossing state description using the
above procedure.

In general, complex knots consist of a combination of sim-
ple knots. For example, a bowknot shown in Figure 20(a)
includes an overhand knot. Let us define a continuous subse-
quence the start and end segments of which are both outer
segments and to which operation UOI/UOII cannot be ap-
plied as atightenable sub-knot. We can identify a tighten-
able sub-knot as one segment in the tightenability check. A
bowknot can be simplified as shown in Figure 20(b). The
knot shown in Figure 20(b) is a partially tightenable knot
with four pulling segments—both bow parts and both ter-
minal segments—which correspond to pulling segments for
tightening a bowknot.

Completely tightenable knots or tightenable sub-knots cor-
respond to looped knots in knot theory when both endpoints
are connected without changing their crossing states. Fig-
ure 21 shows examples of completely tightenable knots and
corresponding looped knots in knot theory, which classi-
fies looped knots according to their equivalence. This im-
plies that we can make a database of completely tightenable
knots/tightenable sub-knots. Thus, looped knots in knot the-
ory are useful for the tightenability check.

6. Experiments

We proposed methods to represent manipulation processes of
a linear object and to determine actions to perform these pro-
cesses in Sections 2 and 3, respectively. Thus, we can plan
knotting/unknotting manipulation of a linear object qualita-
tively when its initial and objective state are given. Moreover,
in Section 5 we proposed a method for tying knots tightly.

In this section, we discuss the effectiveness of our pro-
posed methods. Figure 22 shows an overview of our devel-
oped system consisting of a PC, a 6 DOF manipulator, and a
CCD camera. A chemical fiber rope, the physical properties
of which were unknown, was placed on a table and its shape
captured by the camera fixed above the table, corresponding
to the projection plane.

The first experiment involved an unknotting manipulation
and the second a knotting manipulation.

6.1. Unknotting Manipulation

Figure 23 shows the required manipulation corresponding to
untying of an overhand knot. The initial state shown in Fig-
ure 23(a) can be represented as El−C−

1 −C−
2 −C−

3 −C−
1 −C−

2 −
C−

3 −Er and the objective state shown in Figure 23(b) can be
represented as El−Er . The assumptions in this case study were
as follows:

1. One endpoint of the object is fixed during manipulation;
the open square in Figure 23 indicates the position of
fixation.

2. One manipulator can be used.

3. The manipulator can approach the object only from the
front of the projection plane.

4. The manipulator releases the object whenever one op-
eration is finished.

One manipulation process shown in Figure 24 was derived
by our proposed method; it consisted of three transitions, i.e.,
Nt = 3. Furthermore, the manipulation plans illustrated in
Figure 25 were selected by considering criterion,Nr , with
respect to each operation.

Next, the system determined the current crossing state of
the object from a grayscale image. The position of individual
crossings were identified by analyzing the image. In this ex-
periment, information regarding which point was upper/lower
at each crossing was given manually for simplicity. However,
this information can also be obtained automatically using a
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(a-1) overhand knot (a-2) figure-of-eight knot (a-3) double overhand knot
(a) completely tightenable knots

(b-1) (b-2) (b-3)
(b) looped knots

Fig. 21. Completely tightenable knots and looped knots in knot theory.

CCD camera

6 DOF manipulator

table

linear objectPC

Fig. 22. Overview of developed system.

(a) initial state (b) objective state

Fig. 23. Required manipulation—untying overhand knot.
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UOIV

S1

3 2 1 0

UOI

number of crossings

S2 S3 S4

Fig. 24. Generated processes for untying overhand knot.

(a) operation 1 : UOIV

(b) operation 2a : UOIV

(c) operation 2b : UOIV

(d) operation 3a : UOI

(e) operation 3b : UOIV

Fig. 25. Generated manipulation plans for untying overhand knot.
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stereo camera.We regarded the position of each grasping point
as the midpoint of each segment. The directions of axis-1 and
axis-2 were determined from the tangent at a grasping point.
As the adequate distance of movement for a state transition
was unknown, the system checked whether its crossing state
was changed after moving the object. Thus, the manipula-
tor grasped, moved, and released the object according to the
generated qualitative plan.

In this case study, the system selected operation 2b and
operation 3a by considering the space requirements for inser-
tion of the gripper and the motion range of the manipulator.
Figure 26 shows the results of this manipulation. The manip-
ulator first pulled the lower terminal in the loop, then took
the terminal off the loop, and pulled the terminal away to
remove the loop. In this case, the loop decreased in size grad-
ually and was eventually removed. A less flexible object may
become kinked before removing the loop. In such cases, the
action for operation 3a shown in Figure 25(d) is not adequate.
Whether kinking occurs is dependent on physical properties
of the linear object. As they are not considered in this qualita-
tive planning method, quantitive analysis is required to verify
the validity of the derived actions.

6.2. Knotting Manipulation

The second experiment involved tying a slipknot as shown in
Figure 15.The assumptions in this case study were the same as
in the first experiment. The possible manipulation processes
as shown in Figure 16 were derived by our proposed method.
Considering criteriaNt , we selected process S11 → S5 → S2

→ S1 in Figure 16. Next, the actions to be taken were de-
termined. From theorem 2, we selected three actions shown
in Figure 8(a-1) for transition S11 → S5, Figure 8(b-3) for
transition S5 → S2, and Figure 8(b-16) for transition S2 →
S1. The manipulation plans illustrated in Figure 27 were then
derived. Next, we examined tightening of this slipknot. Re-
call that a slipknot can be tied tightly by pulling segments
Lu

1,
l
5L

l
4, andu

3L, which correspond to both terminal segments
and the bow segment as shown in Figure 28. From assump-
tion 1, the right terminal segment was fixed. Therefore, we
had to grasp and pull away the left terminal segment and the
bow segment. However, from assumption 2, two segments
could not be grasped simultaneously. In this experiment, the
left terminal segment was fixed with a weight as shown in
Figure 29(h). Then, we tightened the slipknot by pulling the
bow segment alone. Figure 29 shows the results of this knot-
ting manipulation. As shown in this figure, a slipknot could
be tied by repeated overlapping of one part of the linear ob-
ject with its other part. These observations indicated that we
can make several knots using a simpler mechanism than the
human arm/hand and in a manner different to that performed
by a human. Thus, we concluded that our proposed method is
useful for automatic planning and execution of linear object
manipulation.

7. Conclusions

In this paper, we proposed a planning method for knot-
ting/unknotting of deformable linear objects. First, we pro-
posed a description of the topological state of a linear ob-
ject. Such objects can be represented as finite crossing states
including three properties: number/sequence of crossings,
which point is upper/lower at each crossing, and whether
each crossing is left-handed helical or right-handed helical.
Second, four basic operations were introduced: three Reide-
meister moves and an additional operation to cross/uncross a
terminal segment of a linear object.A state transition between
crossing states corresponds to a basic operation changing the
number of crossings or permuting their sequence. Then, pos-
sible sequences of crossing state transitions, i.e., possible ma-
nipulation processes can be generated once the initial and the
objective states are given. Third, actions were defined to re-
alize the derived manipulation processes. They correspond
to adequate sets of grasping points, their directions of move-
ment, and the direction of approach of the manipulator to each
grasping point. Then, qualitative manipulation plans, i.e., pos-
sible processes and actions, can be generated on a computer.
These proposals and definitions suggested that theoretically
any knotting manipulation of a linear object can be realized
by a one-handed robot with three translational DOF and one
rotational DOF if the object is placed on a table. Furthermore,
criteria for evaluation of manipulation plans were introduced
to reduce the number of candidate manipulation plans. In gen-
eral, knots fulfill their fixing function after they are tied tightly.
Which part of a linear object should be pulled away for tight-
ening depends on the topological state of the object. There-
fore, we established a planning method for tying knots tightly.
Using this method, it is possible to determine the parts that
should be pulled to tighten knots. Finally, we demonstrated
that our system can plan and execute both knotting and un-
knotting manipulations of a linear object.

Application of the method proposed in this paper allows
the planning of linear object manipulation in a qualitative
manner. However, this method is not suitable for determin-
ing the grasping points of manipulators and their trajectories
in detail. Previously, we developed methods for static mod-
eling (Wakamatsu and Hirai 2004) and dynamic modeling
(Wakamatsu et al. 2005) of linear object deformation. These
modeling methods can be applied to detailed planning as they
can be used to estimate the geometrical shape of a knotted lin-
ear object. Figure 30 shows the computed shape of an over-
hand knot. Once a qualitative plan is selected by using our
proposed method, the number of crossings after executing
one operation is determined. The number of grasping points
to perform the operation is also determined. Then, inputting
them as constraints, both position of grasping points and their
appropriate trajectories in each operation can be calculated
using our physical simulation and deformation path planning.
Thus, a manipulation strategy will be derived by combining
qualitative planning with quantitative analysis.
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(a) initial state (b) executing operation 1

(c) after operation 1 (d) executing operation 2b

(e) after operation 2b (f) executing operation 3a

(g) final state

Fig. 26. Results of experiment for untying overhand knot.

(a) operation 1 : COIV
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(b) operation 2 : COII
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(c) operation 3 : COII

Fig. 27. Generated manipulation plans for tying slipknot.
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L 1
u

L 4
l

5
l

L3
u

Fig. 28. Pulling segments for tightening slipknot.

(a) initial state (b) executing operation 1

(c) after operation 1 (d) executing operation 2

(e) after operation 2 (f) executing operation 3

(g) after operation 3 (h) fixing left endpoint

(i) tightening (j) final state

Fig. 29. Results of manipulation for tying slipknot.
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Fig. 30. Computed shape of overhand knot.
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