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Abstract
A dynamic motion analysis of deformable rodlike

objects is presented. In manufacturing processes, there
are many manipulative operations which deal with de-
formable objects. Evaluation of the shapes of these ob-
jects is important for their manipulative operations be-
cause their deformation can cause both success of such
operations if it is utilized e�ectively and their failure
if the deformation is unexpected. Furthermore, if de-
formable objects are operated quickly, the dynamical
e�ect of them cannot be neglected when we evaluate
their shapes. Thus, both static and dynamic analysis
of objects deformation is required so that the shape of
the objects can be evaluated on a computer in advance.
In this paper, we will analyse the dynamic deforma-
tion of deformable rodlike objects. First, a geomet-
ric representation to describe the shape of a rodlike
object with dynamic deformation is introduced. The
potential and the kinetic energy of the object and the
geometric constraints imposed on it are then formu-
lated. The shape of the dynamically deforming object
can be derived by minimizing the di�erence between
the kinetic energy and the potential energy under the
geometric constraints. Next, a procedure to compute
the deformed shape is developed by use of Euler's ap-
proach. Finally, some numerical examples are shown
in order to demonstrate how the proposed approach
computes the shapes of deformed rodlike objects.

1 Introduction
In manufacturing, the automation of handling and

manipulative processes which deal with deformable
objects such as rubber tubes, sheet metals, cords,
leather products, and paper sheets has been done but
it is not enough to satisfy our requests. In manipula-
tive processes, if the shape of deformed objects can be
utilized actively, we can operate them successfully. If
it is unexpected, however, the operations may result in
failure. Modeling of deformable objects is thus neces-
sary in order to evaluate the shape of them on a com-
puter in advance and to derive task strategies to carry
out manipulative operations successfully by avoiding

(a) slow manipulation (b) quick manipulation

Figure 1: Example of manipulation utilizing dynamic
deformation of rodlike object

deformation or by utilizing it. Zheng et al derived
strategies to insert a exible beam into a hole with-
out wedging or jamming[1]. Villarreal et al developed
strategies by use of the bu�er zone, which represents
the compliance of exible parts[2]. We have developed
a modeling technique of rodlike objects such as wires
considering its static deformation[3]. Nakagaki et al
have been studying insertion task of a exible wire
into hole[4]. However, these studies do not consider
the dynamical e�ect of deformable objects when they
deform. Modeling of dynamic deformation becomes
important because the dynamical e�ect of them can-
not be neglected if they are operated quickly by hu-
mans or machines. Furthermore, by considering dy-
namic deformation, we can derive new task strategies
which cannot be derived when only static deforma-
tion is considered. For example, when we manipulate
a rodlike object slowly as shown in Figure 1-(a), it will
impact against an obstacle. But, quick manipulation
can avoid impacting as shown in Figure 1-(b) even if a
manipulator tracks the same trajectory. Also, we can
identify whipping or lariating as one of good strate-
gies to operate the far end of a deformable rodlike
object such as a whip or a lariat quickly. Therefore,
it is important for quick manipulation of deformable
objects to evaluate the shape of them which deform
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Figure 2: Motion and deformation of rodlike object

dynamically in advance.
In this paper, we will analyse the dynamic deforma-

tion of deformable rodlike objects. First, a geometric
representation of dynamic deformation of a rodlike ob-
ject in 3-dimensional space is established. Secondly,
the potential and the kinetic energy of the object and
the geometric constraints imposed on it are formu-
lated. Thirdly, procedure to compute the deformed
shape is developed by use of Euler's approach. Fi-
nally, some numerical examples are shown in order to
demonstrate how the shapes of deformed rodlike ob-
jects are computed using the proposed approach.

2 Modeling of Rodlike Object Defor-
mation

2.1 Geometric Representation of De-
formed Rodlike Objects

In this section, we will formulate the geometrical
shape of a rodlike object, which moves and deforms
dynamically in three-dimensional space. Let L be the
length of the object, s be the distance from one end-
point of the object along it, and t be the time. Let us
introduce the global space coordinate system and the
local object coordinate systems at individual points
on the object and at each time, as shown in Figure 2,
in order to describe the motion and the deformation
of a rodlike object.

Let O�xyz be the coordinate system �xed on space
and P(s; t) � ��� be the coordinate system �xed on
an arbitrary point of the object at distance s and
time t. Select the direction of the coordinates so that
the �-axis, �-axis, and �-axis are parallel to x-axis, y-
axis, and z-axis, respectively, in natural state where
the object neither move nor deform. Then, the mo-
tion and the deformation of the object are represented
by the relationship between the local coordinate sys-
tem P(s; t) � ��� and the global coordinate system
O�xyz. Let us describe the orientation of the local
coordinate system with respect to the space coordi-
nate system by use of Eulerian angles, �(s; t), �(s; t),

and  (s; t). Namely, rotational transformation from
coordinate system P(s; t) � ��� to coordinate system
O�xyz is expressed by the following rotational ma-
trix:"

C�C�C � S�S C�S�C +C�S �S�C 
�C�C�S � S�C �C�S�S +C�C S�S 

S�C� S�S� C�

#
:

For the sake of simplicity, cos � and sin � are abbrevi-
ated as C� and S�, respectively. Note that the Eulerian
angles depend upon parameters s and t.

By using above rotational matrix, a unit vector
along �-axis at the natural state is transformed into
the following vector due to the object motion and de-
formation:

�(s; t) =

"
cos� sin �
sin� sin �
cos �

#
: (1)

Let x = [ x(s; t) y(s; t) z(s; t) ]T be spatial coordinates
corresponding to point P(s; t) along x-, y-, and z-axis,
respectively. The spatial coordinates can be computed
by integrating the above vector. Namely,

x = x0 +

Z s

0

� ds (2)

where x0 denotes the coordinate at the end point cor-
responding to s = 0, which is represented as a function
of time t.

Let us describe the curvature of the object and its
torsional ratio at time t in order to express bending
and torsional deformations of the object. Let �0, �0,
and  0 be Eulerian angles at the end point correspond-
ing to s = 0. Then, these are represented as a function
of time t. Let �(s; t) and �(s; t) be the curvature and
the torsional ratio at point P(s; t), respectively. The
curvature and the torsional ratio can be described by
use of Eulerian angles �, �,  , and �0 as follows:

�2 =

�
@�

@s

�2

+

�
@�

@s

�2

sin2(� � �0);

�2 =

�
@ 

@s
+
@�

@s
cos(� � �0)

�2

:

Next, let us describe the velocity and the angular
velocity of the object at time t, in order to express
motion of the object. Let v be the velocity of the
object at the point P(s; t), namely,

v =
@x

@t
:

Furthermore, let !1(s; t) and !2(s; t) be the angular
velocity for deformation around the axis which inter-
sects with the central axis perpendicularly, and that
around the central axis at point P(s; t), respectively as
shown in Figure 3. It is found that these two angular



velocities can be described by use of Eulerian angles
�, �,  , �0, �0, and  0 as follows:

!1
2 =

�
@(� � �0)

@t

�2

+

�
@(�� �0)

@t

�2

sin2(� � �0);

!2
2 =

�
@( �  0)

@t
+
@(�� �0)

@t
cos(� � �0)

�2

:

From the above discussion, the geometric shape of
a moving and deforming rodlike object can be repre-
sented by both three variables, �, �, and  , which de-
pend upon distance s and time t, and three variables,
�0, �0, and  0, which depend upon time t alone.

ω1

ω2

ds

Figure 3: Angular velocities of rodlike object

2.2 Potential Energy, Kinetic Energy,
and Geometric Constraints

In this paper, we will adopt the Hamilton's princi-
ple that the time integral of the di�erence between the
kinetic energy of the object and its potential energy
reaches the minimum when the object moves dynam-
ically. In this section, we will formulate the potential
energy and the kinetic energy of a rodlike object and
geometric constraints imposed on it.

First, let us formulate the potential energy of a rod-
like object. Applying Bernoulli and Navier's assump-
tion, we can describe the potential energy U at time t
as follows:

U = Uex + Utor

where Uex and Utor represent exural and torsional
energy, respectively.

Flexural energy Uex and torsional energy Utor of
the object can be computed by integrating exural
energy and torsional energy at point P(s) over the ob-
ject. Assuming that the curvature and the torsional
angle are proportional to bending moment and twist-
ing moment at each point P(s; t), respectively, it turns
out that the potential energy U(t) can be described as
follows:

U (t) =

Z L

0

Rf
2
�2 ds+

Z L

0

Rt
2
�2 ds (3)

where Rf and Rt represent the exural rigidity and
the torsional rigidity at point P(s), respectively.

Next, let us formulate the kinetic energy of a rodlike
object. Considering translation, rotation as a rigid
body, and rotational deformation of the object, the
kinetic energy T at time t is described as follows:

T (t) = Ttrans + Trot + Tdef

where Ttrans, Trot, and Tdef represent the kinetic en-
ergy for translation, that for rotation as a rigid body,
and that for deformation, respectively. They can also
be computed by integrating these kinetic energy at
point P(s; t) over the object. Namely,

T (t) =

Z L

0

�

2
v2ds+

Z L

0

�

2
f(x; �0; �0;  0) ds

+

Z L

0

I1
2
!1

2ds+

Z L

0

I2
2
!2

2ds
(4)

where �, I1, and I2 represent the mass of the object
per unit length, the moment of inertia around the axis
which intersects with the central axis of the object
perpendicularly, and that around the central axis of
it, respectively. Function f(x; �0; �0;  0) can be de-
termined as rotational energy of a rigid object.

By applying Hamilton's principle, the following
functional should reach to its minimum at the actual
motion and deformation:

F =

Z t2

t1

(T � U) dt: (5)

Some geometric constraints are imposed on the ob-
ject because a rodlike object may interact with other
objects such as �ngertips and obstacles. Let us derive
the geometric constraints imposed on the object. The
relative position between two points on the object is
often controlled during object operations. Consider
a constraint that speci�es the positional relationship
between two points on the object through t1 to t2. Let
l = [ lx ly lz ]T be a predetermined vector describing
the relative position between two operational points,
P(s1) and P(s2). Then, the following equational con-
dition must be satis�ed:Z s2

s1

� ds� l = 0; 8 t 2 [ t1; t2 ]: (6)

The orientation at some points of the object may also
be controlled during the operation. These orienta-
tional constraints are simply described as follows:

�(s1; t) � �a = 0; 8 t 2 [ t1; t2 ] (7)

where �a = [�a �a  a ]
T are prede�ned angles at one

operational point P(s1).
Equational constraints given by eqs.(6) and (7)

can be taken into the optimization problem shown in
eq.(5) as follows:

F =

Z t2

t1

(T � U) dt+
X
i

Z t2

t1

�i � gi dt (8)

where �i and gi represent Lagrange undetermined
multiplier functions and the equational conditions, re-
spectively.



From the above discussion, the shape of rodlike ob-
jects is determined by minimizing the di�erence be-
tween the kinetic energy described in eq.(4) and po-
tential energy described in eq.(3) under geometric con-
straints described in eqs.(6) and (7). Namely, com-
putation of the shape of rodlike objects results in a
variational problem under several conditions.

3 Procedure to Compute Shape of
Rodlike Object

In the previous section, we found that the com-
putation of the shape of rodlike objects results in a
variational problem. We will establish the procedure
to compute the shape of rodlike objects by applying
Euler's approach, which is one method to solve a vari-
ational problem.

Let � be a vector consisting of variables as follows:

� = [ �; �;  ; x; y; z; �1; �2; � � � ]
4
= [ �1; �2; �3; � � � ]:

Let vector p be the partial derivative of � with respect
to distance s and vector q be the partial derivative of
� with respect to time t, namely,

p =
@�

@s
; q =

@�

@t
:

Then, it can be proved that the vector � that min-
imizes eq.(8) must satisfy the following di�erential
equations:

fk(s; t) =
@F

@�k
�

@

@s

�
@F

@pk

�
�
@

@t

�
@F

@qk

�
= 0;

8 s 2 [ 0; L ]; 8 t 2 [ t1; t2 ]
(9)

where �k, pk, and qk are components of �, p, and q,
respectively.

If the position and the velocity at each point
P (s; t1) of the object is predetermined, eq.(9) can be
regarded as a set of functions of angular acceleration
@2�=@t2, @2�=@t2, and @2 =@t2 as follows:

fk

�
@2�

@t2
;
@2�

@t2
;
@2 

@t2
; s

� ����
t=t1

= 0; 8 s 2 [ 0; L ]:

(10)
It is found that eq.(10) is equivalent to the following
equation: X

k

Z L

0

�
fkjt=t1

�2
ds = 0: (11)

Let us express Eulerian angles, �, �,  , and their
�rst and second partial derivatives with respect to
time t by linear combinations of basic functions e1(s)
through en(s) as follows:

� = [ a1; a2; a3 ]
Te(s);

@�

@t
= [ b1; b2; b3 ]Te(s);

@2�

@t2
= [ c1; c2; c3 ]Te(s)

where � represents Eulerian angles vector [ � �  ]T,
ai, bi, and ci (i = 1; 2; 3) represent coe�cient vectors
with respect to Eulerian angles, their angular veloc-
ity, and their angular acceleration, respectively. And
e(s) represents a vector consisting of basic functions
[ e1(s) e2(s) � � � en(s) ]

T. Then, �rst and second
partial derivatives of Eulerian angles with respect to
distance s are represented as follows:

@�

@s
= [ a1; a2; a3 ]

T d

ds
e(s);

@2�

@s2
= [ a1; a2; a3 ]

T d2

ds2
e(s):

From the above discussion, eq.(11) can be represented
as follows:

X
k

Z L

0

ffk(a; b; c; s)jt=t1
	2
ds = 0; t = t1 (12)

where a=[ a1; a2; a3 ], b=[ b1; b2; b3 ], and
c=[c1; c2; c3]. Let us assume that the vector c which
minimizes the left side of eq.(12) satis�es eq.(12) be-
cause the left side of eq.(12) is a quadratic form of
vector c and is not negative. The vector c which min-
imizes the left side of eq.(12) must satisfy with the
following set of equations:

@

@ci

X
k

Z L

0

�
fkjt=t1

�2
ds = 0; i = 1; 2; � � � ; 3n (13)

Eq.(13) can be represented the linear combination of
angular acceleration coe�cients c as follows:

Ac = d (14)

where (3n;3n) matrix A and (3n) vector d are func-
tions of determined variables a, b, e(s), and their
derivatives with respect to s. By solving a set of
equations represented by eq.(14), we can derive three
angular accelerations @2�=@t2, @2�=@t2, and @2 =@t2,
which are described as functions of distance s at t = t1.

Furthermore, the velocity and the position of the
object at t = t1+�t can be represented approximately
as follows:

@�

@t

����
t=t1+�t

�=
@�

@t

����
t=t1

+�t �
@2�

@t2

����
t=t1

(15)

�(s; t1 +�t) �= �(s; t1);

+�t �
@�

@t

����
t=t1

+
(�t)2

2

@2�

@t2

����
t=t1

:
(16)

As a result, the shape of rodlike objects can be derived
by solving eq.(14) and computing eqs.(15) and (16)
repeatedly.



4 Numerical Examples
In this section, we will show some numerical ex-

amples by using a proposed procedure in the previous
section. The following set of basic functions, which
were used in the computation of the static shape of a
rodlike object[3], are used in the computation of these
examples:

e1(s) = 1; e2(s) =
s

L
;

e2n+1 = sin
n�s

L
;

e2n+2 = cos
n�s

L
: (n = 1; 2;3; 4)

The number of basic functions should be determined
with considering both precision in approximation and
computing time.

2-Dimensional Deformation without External

Force The �rst example shows dynamic deformation
of a rodlike object in 2-dimensional space without an
external force. The shape of a rodlike object and its
energy then can be described by two of Eulerian an-
gles, that is, �(s; t) and �0(t).
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Figure 4: Example of 2-dimensional deformation with-
out external force

As shown in Figure 4, let us assume that a rodlike
object is deformed so that the distance between two
endpoints is equal to 0:8L, that any moment cannot
be exerted at both endpoints, and that this object has
neither translational nor rotational velocity in initial
state. Namely:

x(L; 0) =

�
z
x

�
=

�
0:8L
0

�
;

@�(0; t)

@s

����
t=0

=
@�(L; t)

@s

����
t=0

= 0;

@x

@t

����
t=0

=
@�

@s

����
t=0

= 0; 8 s 2 [ 0; L ]:

(17)

The initial shape of a rodlike object can be derived by
minimizing the potential energy consisting of exural
energy alone under constraints given by eq.(17). In
detail, see [3]. Furthermore, we assume that the left
endpoint of the object �xed on the global coordinate
system O�xyz:

x0 = 0; 8 t 2 [ 0; 1 ]: (18)

Let us release the right endpoint of the object from
the geometric constraints given by eq.(17) at t = 0.
The equation of motion is then described as follows:

�I1
@2(� � �0)

@t2
+Rf

@2�

@s2

+� sin �

Z L

s

(
@2z

@t2
�

�
@�0
@t

�2

(z � zc)

)
ds

�� cos �

Z L

s

(
@2x

@t2
�

�
@�0
@t

�2

(x� xc)

)
ds = 0:

(19)
where zc and xc represent spatial coordinates of the
center of mass. Let ct be an undetermined coe�cients
vector at time t as follows:

@2�

@t2

����
t=t

=
10X
i=1

cti � ei(s);
@2�0
@t2

����
t=t

= ct11

Figure 5 illustrates the computational results corre-
sponding to L = 1:00, Rf = 1:00� 102, � = 1:00� 10,
I1 = 1:00, �t = 1:00� 10�4.
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Figure 5: Computational result of 2-dimensional de-
formation without external force

2-Dimensional Deformation with External

Force The second example shows 2-dimensional de-
formation a rodlike object when an external force is
imposed on it.
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Figure 6: Example of 2-dimensional deformation with
external force

The initial state when the object does not move is
same as that of the �rst example. Furthermore, we



assume that its right endpoint can move along z-axis
alone:

x(L; t) = 0; 8 t 2 [ 0; 1 ]: (20)

Let us impose an external force fz constantly on this
object at right endpoint in the direction of the z-axis.
It is found that the reaction force fx also exerts at
same point in the direction of the x-axis because the
geometric constraint given by eq.(20) is imposed on
the object at that point. The equation of motion is
then described as follows:

�I1
@2(� � �0)

@t2
+ Rf

@2�

@s2
+ fz sin � � fx cos �

+� sin �

Z L

s

(
@2z

@t2
�

�
@�0
@t

�2

(z � zc)

)
ds

�� cos �

Z L

s

(
@2x

@t2
�

�
@�0
@t

�2

(x� xc)

)
ds = 0:

(21)
Let ct be an undetermined coe�cients vector which
represents the angular acceleration and the reaction
force at time t as follows:

@2�

@t2

����
t=t

=
10X
i=1

cti � ei(s);
@2�0
@t2

����
t=t

= ct11; fx(t) = ct12:

Figure 7 illustrates the computational results corre-
sponding to L = 1:00, Rf = 1:00�102, � = 1:00�102,
I1 = 1:00, fz = �4:0� 104, �t = 1:00� 10�4.
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Figure 7: Computational result of 2-dimensional de-
formation with external force

The relationship between time t and a reaction force
fx at the right endpoint of the object are shown in
Figure 8. As shown here, we can compute both the
shape of dynamic deformation and reaction forces by
use of the proposed procedure.

5 Concluding Remarks
In this paper, we analyzed dynamic deformation of
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-0.2
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t

fx

x 106

x 10 -2

Figure 8: Relationship between time and reaction
force at right endpoint of object

rodlike objects. Firstly, the geometric representation
of a rodlike object which deforms dynamically was es-
tablished. It is found that the motion and deformation
of a rodlike object can be described by Eulerian an-
gles and their derivatives with respect to the distance
s from one endpoint and the time t. Secondly, the
potential and the kinetic energy of the object, and
the geometric constraints imposed on it were formu-
lated. The shape of dynamic deformed object can be
derived by minimizing the time integral of the di�er-
ence between the kinematic energy and the potential
energy under the geometric constraints. Thirdly, a
procedure to compute the shape of dynamic deforma-
tion was developed. Finally, some numerical examples
were shown in order to demonstrate the e�ectiveness
of our proposed procedure.

We believe that this dynamic analysis of rodlike
objects will be useful for their quick manipulation.
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