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Abstract—A modeling method of flexible belt objects is pro-
posed. Deformation of a belt object such as film circuit boards
or flexible circuit boards must be estimated for automatic
manipulation and assembly. In this paper, we assume that
deformation of an inextensible belt object can be described
by the shape of its central axis in a longitudinal direction
called “the spine line” and lines with zero curvature called
“rib lines”. This model is referred to as a “fishbone model”
in this paper. First, we describe deformation of a rectangular
belt object using differential geometry. Next, we propose the
fishbone model considering characteristics of a developable
surface, i.e., a surface without expansion or contraction. Then,
we formulate potential energy of the object and constraints
imposed on it. Moreover, this model is applied to a bent belt
object. Finally, we explain a procedure to compute the deformed
shape of straight and bent objects and compare their shape with
measured shape to demonstrate the validity of our proposed
method.

I. INTRODUCTION

According to downsizing of various electronic devices
such as note PCs, mobile phones, digital cameras, and so
on, the more film circuit boards or flexible circuit boards
illustrated in Fig.1 are used instead of conventional hard
circuit boards. It is difficult to assemble such flexible boards
by a robot because they can be easily deformed during
their manipulation process and they must be deformed
appropriately in the final state. For example, the flexible
circuit board shown in Fig.1-(a) must deform to the objective
shape illustrated in Fig.1-(b) to install into the hinge part
of a mobile phone. Therefore, analysis and estimation of
deformation of film/flexible circuit boards is required.

Insertion of a wire into a hole in 2D space has been
analyzed using a beam model of the wire to derive a strategy
to perform the insertion successfully[1][2]. Kosuge et al.
have proposed a control algorithm of dual manipulators han-
dling a flexible sheet metal[3]. In these studies, only bending
deformation of a flexible object is considered. Lamiraux et
al. have proposed a method of path planning for elastic object
manipulation with its deformation to avoid contact with
obstacles in a static environment[4]. To eliminate vibration
of a linear object during manipulation, an FE model has been
applied to formulate its dynamics[5]. Dynamic modeling of
a flexible object with an arbitrary shape has been proposed to
manipulate it without vibration[6]. In differential geometry,
curved lines in 2D or 3D space have been studied to describe
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(a) natural shape (b) objective shape

Fig. 1. Example of flexible circuit board

their shapes mathematically[7]. Moll et al. have proposed a
method to compute the stable shape of a linear object under
some geometrical constraints quickly based on differential
geometry[8]. It can be applied to path planning for flexible
wires. We have proposed a modeling method for linear
object deformation based on differential geometry and its
applications to manipulative operations[9]. In this method,
linear object deformation with flexure, torsion, and extension
can be described by only four functions. This method can be
applied to a sheet object if the shape of the object is regarded
as rectangle, namely, the object has belt-like shape.

In this paper, we propose a fishbone model based on
differential geometry to represent belt object deformation.
In this model, deformation of a belt object is represented
using its central axis in a longitudinal direction referred to
as the spine line and lines with zero curvature referred to
as rib lines. The objective of manipulation of a flexible
circuit board is to connect its ends to other devices. So,
it is important to estimate position and orientation of ends
of the board. This implies that we have to estimate more
accurately its deformation in a longitudinal direction than
that in a transverse direction. The fishbone model is suitable
for representation of deformation in a longitudinal direction,
that is, deformed shape of the spine line. Moreover, we can
estimate belt object deformation if only the flexural rigidity
of the object along the spine line is given. It indicates that we
can easily identify the actual parameter of the object from
experiment. First, we describe deformation of a rectangular
belt object using differential geometry. Next, we propose the
fishbone model considering characteristics of a developable
surface, i.e., a surface without expansion or contraction.
After that, we formulate potential energy of the object and
constraints imposed on it. Moreover, we apply the fishbone
model to a belt object with multiple bends. Finally, we
explain a procedure to compute the deformed shape of the
object and compare the computed shape of a rectangular
belt and an L-shaped belt with their measured shape to
demonstrate the validity of our fishbone model.
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Fig. 2. Coordinates of belt object

II. MODELING OF STRAIGHT BELT OBJECT

A. Differential Geometry Coordinates

In this section, we formulate the deformation of a rectan-
gular belt object in 3D space. Assumptions in this paper are
as follows:

• The width of the belt object is sufficiently small com-
pared to its length.

• The object is inextensible. Namely, it can be bent and
twisted but cannot be expanded or contracted.

• Both ends of the object cannot be deformed because
connectors are attached to the ends.

In this paper, we focus on deformation of the central axis
in a longitudinal direction of a belt object and attempt to
represent the whole shape of the object using it.

Let U and V be the length and the width of the object,
respectively. Let u be the distance from one end of the object
along the central axis in its longitudinal direction and let v
be the distance from the central axis in a transverse direction
of the object. Let P(u, v) be a point on the object. In order
to describe deformation of the central axis of a belt object,
the global space coordinate system and the local object
coordinate systems at individual points on the object are
introduced as shown in Fig.2. Let O-xyz be the coordinate
system fixed in space and P-ξηζ be the coordinate system
fixed at an arbitrary point P(u, 0) on the central axis of
the object. Assume that the central axis in a longitudinal
direction of the object is parallel to the y-axis and the normal
vector of any point on the object is parallel to the x-axis in its
natural state whereby the object has no deformation. Select
the direction of coordinates so that the ξ-, η-, and ζ-axes
are parallel to the x-, y-, and z-axes, respectively, in the
natural state. Deformation of the object is then represented
by the relationship between the local coordinate system P-
ξηζ at each point on the object and the global coordinate
system O-xyz. This is referred to as differential geometry
coordinate representation. Let us describe the orientation
of the local coordinate system with respect to the space
coordinate system by use of Eulerian angles, φ(u, 0), θ(u, 0),
and ψ(u, 0). Let ξ, η, and ζ be unit vectors along the ξ-, η-,
and ζ-axes, respectively, at point P(u, 0). These unit vectors
are then described by[

ξ η ζ
]

=
 CθCφCψ − SφSψ −CθCφSψ − SφCψ SθCφ

CθSφCψ + CφSψ −CθSφSψ + CφCψ SθSφ

−SθCψ SθSψ Cθ


 . (1)

For the sake of simplicity, cos θ and sin θ are abbrevi-
ated as Cθ and Sθ , respectively, for example. Note that

the Eulerian angles depend on distance u. Let x(u, 0) =
[ x(u, 0), y(u, 0), z(u, 0) ]T be the position vector of point
P(u, 0). The position vector can be computed by integrating
vector η(u, 0). Namely,

x(u, 0) = x0 +
∫ u

0

η(u, 0) du, (2)

where x0 = [ x0, y0, z0 ]T is the position vector at the end
point P(0, 0).

Let ωuξ, ωuη, and ωuζ be infinitesimal ratios of rotation
angles around the ξ-, η-, and ζ-axes, respectively, at point
P(u, 0). Then, the infinitesimal angle ratios can be described
as follows:
 ωuξ

ωuη

ωuζ


 =


 −SθCψ

SθSψ

Cθ


 dφ

du
+


 Sψ

Cψ

0


 dθ

du
+


 0

0
1


 dψ

du
.

(3)

B. Description of Surface Bending

Next, we consider general description of 3D surface. Let
x(u, v) be the position vector of point P(u, v) on a surface.
Let xu(u, v) and xv(u, v) be tangent vectors at point P(u, v)
along u- and v-axes, respectively, and let e(u, v) be the
normal vector at point P(u, v). According to differential
geometry, the normal curvature κ in direction d = axu+bxv

is represented as follows:

κ =
La2 + 2Mab + Nb2

Ea2 + 2Fab + Gb2
, (4)

where E, F , and G are coefficients of the first fundamental
form and L, M , and N are those of the second fundamental
form of the surface. These coefficients are defined as follows:

E = xu · xu, F = xu · xv, G = xv · xv, (5)

L =
∂xu

∂u
· e, M =

∂xu

∂v
· e, N =

∂xv

∂v
· e. (6)

The normal curvature κ depends on the direction d and its
maximum value κ1 and its minimum value κ2 are called the
principal curvatures. Direction d1 of the maximum curvature
κ1 and direction d2 of the minimum curvature κ2 are referred
to as principal directions. The principal curvatures and the
principal directions specify bending of a surface. A surface
is also characterized by Gaussian curvature K(u, v) and the
mean curvature H(u, v). They are related to the principal
curvatures κ1 and κ2 by

K = κ1κ2 =
LN − M2

EG − F 2
, (7)

H =
κ1 + κ2

2
=

EN − 2FM + GL

2(EG − F 2)
. (8)

Vectors xu, xv, and e correspond to η, ζ, and ξ in this
paper, respectively. Then, coefficients of the first fundamental
form are E = 1, F = 0, and G = 1, respectively. Moreover,
the derivation of unit vectors η and ζ can be described using
infinitesimal ratios of rotation angles as follows:

∂η

∂u
= −ωuζξ + ωuξζ, (9)

∂ζ

∂u
= ωuηξ − ωuξη =

∂ξ

∂v
. (10)
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Fig. 3. Fishbone model

Substituting eqs.(9) and (10) into eqs.(6), L and M can
be represented as a function of infinitesimal angle ratios as
follows:

L = (−ωuζξ + ωuξζ) · ξ = −ωuζ, (11)

M = (ωuηξ − ωuξη) · ξ = ωuη. (12)

In contrast, N cannot be described by Eulerian angles. So,
we introduce the fourth parameter δ(u, 0): N = δ(u, 0).
It corresponds to the curvature in a transverse direction.
Consequently, Gaussian curvature K and the mean curvature
H is described by

K = −ωuζδ − ω2
uη, (13)

H =
δ − ωuζ

2
. (14)

Thus, bending of a surface is characterized by Eulerian
angles φ(u, 0), θ(u, 0), and ψ(u, 0) and the curvature in a
transverse direction δ(u, 0). Note that K and H depends on
not only coordinate u but also coordinate v. In this paper,
we assume that the whole shape of a belt object can be
described by the shape of the central axis in a longitudinal
direction because the width of a belt object is sufficiently
small compared to its length.

If a principal curvature κ2, i.e., the minimum value of the
normal curvature is equal to zero, the surface is developable.
Namely, it can be flattened without its expansion or contrac-
tion. Such surface is referred to as a developable surface.
In this paper, we assume that a belt object is inextensible.
Then, the deformed shape of the object corresponds to
a developable surface. It means that the object bends in
direction d1 and it is not deformed in direction d2. Namely, a
line the direction of which coincides with direction d2 is kept
straight after deformation. In this paper, the central axis in a
longitudinal direction of the object is referred to as the spine
line and a line with zero curvature at a point on the object is
referred to as a rib line as shown in Fig.3. We assume that
bending and torsion of the spine line and direction of the rib
line of each point specifies deformation of a belt object. This
model is referred to as a fishbone model in this paper. Let
α(u, 0) be rib angle, which is the angle between the spine
line and direction d1 as shown in Fig.4-(a). Consequently,
the shape of a straight belt object can be represented using
five variables φ(u), θ(u), ψ(u), δ(u), and α(u). Note that
they depend on only the distance u from one end of the
object along the spine line.

C. Constraints on Belt Object Variables

Let us consider conditions which five variables must
satisfy so that the surface of a belt object is developable.
Gaussian curvature K of a developable surface must be zero

α

P(u, 0)

d1d2

r (u, 0)

du

α α+dα

P(u, 0)

(a) (b)

Fig. 4. Rib angle and rib lines

at any point. So, the following constraint is imposed on the
object.

K = −ωuζδ − ω2
uη = 0, ∀u ∈ [ 0, U ]. (15)

From eq.(15), δ is described by

δ = −ω2
uη

ωuζ
. (16)

The infinitesimal ratio of rotation angle around ξ-axis ωuξ

must also be satisfied the following equation because of the
inextensibility of a belt object:

ωuξ = 0, ∀u ∈ [ 0, U ]. (17)

Moreover, as shown in Fig.4-(b), to prevent rib lines from
intersecting with themselves on a belt object, the following
inequalities must be satisfied:

−2 cos2 α

V
≤ dα

du
≤ 2 cos2 α

V
, ∀u ∈ [ 0, U ]. (18)

Substituting eq.(16) into eqs.(4) and (14), the normal cur-
vature in direction d1 = ξ cosα + η sin α, i.e., a principal
curvature κ1 is as follows:

κ1 = −ωuζ cos2 α + 2ωuη cosα sinα − ω2
uη

ωuζ
sin2 α

= −ωuζ −
ω2

uη

ωuζ
(19)

Then, α can be described as follows:

α = − tan−1 ωuη

ωuζ
. (20)

Now, let us introduce parameter β(u):

β = tan α. (21)

Then, β must satisfy the following equation from eq.(20):

ωuη + ωuζβ = 0, ∀u ∈ [ 0, U ]. (22)

Moreover, eq.(18) is described as follows by substituting
eq.(21):

− 2
V

≤ dβ

du
≤ 2

V
, ∀u ∈ [ 0, U ]. (23)

Consequently, the shape of a belt object can be represented
by four variables φ(u), θ(u), ψ(u), and β(u) considering
necessary constraints for developability of the object surface.
And, they must satisfy eqs.(17), (22), and (23) in any state
to maintain developability.
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D. Potential Energy and Geometric Constraints

Let us formulate the potential energy of a deformed belt
object. We can assume that a belt object bends along direc-
tion d1 without torsional deformation. Then, the potential
energy I can be described as follows assuming that the
flexural energy is proportional to the bending moment at
each point P(u):

I =
∫ U

0

Rf

2 cosα

(ω2
uζ + ω2

uη)2

ω2
uζ

du =
∫ U

0

Rf

2
ω2

uζ

cos5 α
du,

(24)
where Rf represents the flexural rigidity of a belt object
along the spine line at point P(u).

Next, let us formulate geometric constraints imposed on a
belt object. Let l = [ lx, ly, lz ]T be a predetermined vector
describing the relative position between two operational
points on the spine line, P(ua) and P(ub). Recall that the
spatial coordinates corresponding to distance u are given by
eq.(2). Thus, the following equation must be satisfied:

x(ub) − x(ua) = l. (25)

The orientational constraint at operational point P(u c) is
simply described as follows:

φ(uc) = φc, θ(uc) = θc, ψ(uc) = ψc, (26)

where φc, θc, and ψc are predefined Eulerian angles at this
point.

Therefore, the shape of a belt object is determined by min-
imizing the potential energy described by eq.(24) under nec-
essary constraints for developability described by eqs.(17),
(22), and (23) and geometric constraints imposed on the
object described by eqs.(25) and (26). Namely, computation
of the deformed shape of the object results in a variational
problem under equational and inequality constraints.

III. MODELING OF BELT OBJECT WITH BENDS

Some flexible circuit boards bend like a polygonal line as
shown in Fig.1. In this section, we apply the fishbone model
to an L- or V-shaped belt object. Fig.5 shows a belt object
with one bend. Let λ be the bending angle between the spine
line of the left part and that of the right part at point P(uh).
Line ab illustrated in Fig.5 is referred to as a connecting line
in this paper. To represent the bend of the object, Eulerian
angles and rib angles of the left part and those of the right
part are defined separately, for example,

φ(u) =
{

φ1(u) (0 ≤ u ≤ uh) ,
φ2(u) (uh ≤ u ≤ U) ,

(27)

where a parameter with subscript 1 is for the left part and that
with subscript 2 for the right part of the object, respectively.
Then, the following conditions must be satisfied at point
P(uh):

η2 (uh) = η1 (uh) cosλ + ζ1 (uh) sin λ, (28)

ζ2 (uh) = −η1 (uh) sin λ + ζ1 (uh) cosλ. (29)

λ

uh

a

b

ξ η

ζ

O P(u  )h

Fig. 5. Object with one bend

Let us assume that the rib line at point P(uh) coincides with
the connecting line, namely,

β1 (uh) = tan(λ/2), (30)

β2 (uh) = − tan(λ/2). (31)

Moreover, the principal curvature κ1 at point P(uh) must be
continued. So, the following condition is derived:

ωuζ1 (uh) +
ω2

uη1 (uh)
ωuζ1 (uh)

= ωuζ2 (uh) +
ω2

uη2 (uh)
ωuζ2 (uh)

. (32)

The potential energy I of this bent object is described by

I =
∫ uh

0

Rf

2
ω2

uζ1

cos5 α1
du +

∫ U

uh

Rf

2
ω2

uζ2

cos5 α2
du. (33)

Then, the deformed shape of the object is derived by mini-
mizing the above potential energy under not only some geo-
metric constraints but also constraints described by eqs.(28)
through (32). This model also can be applied to a belt object
with multiple bends.

Flexible circuit boards with curves also exist. Note that
the infinitesimal ratio of rotation angle around ξ-axis ωuξ

corresponds to the curvature of the spine line of a belt object.
As we assume that the spine line is straight in this paper, it is
constantly equal to zero. If an object is curved with a certain
curvature, ωuξ must be equal to that curvature even if the
object deforms. We can impose this constraint on the object
instead of eq.(17). This implies that our proposed method
can be applied to a curved belt object.

IV. COMPUTATION OF BELT OBJECT DEFORMATION

A. Computation Algorithm

Computation of the deformed shape of a belt object results
in a variational problem as mentioned in Section II and III. In
[9], we developed an algorithm based on Ritz’s method[10]
and a nonlinear programming technique to compute linear
object deformation. In this paper, we apply such algorithm
to the computation of belt object deformation.

Let us express functions φ(u), θ(u), ψ(u), and β(u) by
linear combinations of basis functions e1(u) through en(u):

φ(u) =
n∑

i=1

aφ
i ei(u)

�
= aφ · e(u), (34)

θ(u) =
n∑

i=1

aθ
i ei(u)

�
= aθ · e(u), (35)

ψ(u) =
n∑

i=1

aψ
i ei(u)

�
= aψ · e(u), (36)
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β(u) =
n∑

i=1

aβ
i ei(u)

�
= aβ · e(u), (37)

where aφ, aθ , aψ, and aβ are vectors consisting of coeffi-
cients corresponding to functions φ(u), θ(u), ψ(u), and β(u)
respectively, and vector e(u) is composed of basis functions
e1(u) through en(u). Substituting the above equations into
eq.(24), potential energy I is described by a function of
coefficient vectors aφ, aθ , aψ, and aβ . Constraints are also
described by conditions involving the coefficient vectors.
Especially, discretizing eqs.(17), (22), and (23) by dividing
interval [0, U ] into n small intervals yields a finite number of
conditions. As a result, a set of the constraints is expressed by
equations and inequalities in terms of the coefficient vectors.

Consequently, the deformed shape of a belt object can
be derived by computing a set of coefficient vectors aφ,
aθ, aψ, and aβ that minimizes the potential energy under
the constraints. This minimization problem can be solved by
the use of a nonlinear programming technique such as the
multiplier method[11]. In case of a belt object with one bend,
coefficient vectors for the left part and those for the right part
are defined separately, for example,

φ1(u)
�
= aφ

1 · e(u), φ2(u)
�
= aφ

2 · e(u). (38)

Then, coefficient vectors aφ
j , aθ

j , aψ
j , and aβ

j (j = 1, 2)
minimizing the potential energy determine the object shape.

B. Examples of Computation

In this section, numerical examples demonstrate how the
proposed method computes the deformed shape of a belt
object. The following set of basis functions are used in the
computation of these examples:

e1 = 1, e2 = u,

e2i+1 = sin
πiu

U
, e2i+2 = cos

πiu

U
, (i = 1, 2, 3, 4). (39)

Necessary constraints for developability described by
eqs.(17), (22), and (23) are divided into 16 conditions at point
P(iU/15) (i = 0, · · · , 15) respectively in the following exam-
ples. All computations were performed on a 750MHz Alpha
21264 CPU with 512MB memory operated by Tru64UNIX.
Programs were compiled by a Compaq C Compiler V6.1
with optimization option -O4.

Fig.6 shows the first example of straight object deforma-
tion. The length of the object U is equal to 1, its width
V is equal to 0.1, and its flexural rigidity along the spine
line Rf is constantly equal to 1. In this example, both
ends of the spine line are on the same line but directions
of the spine line at these points are different. Fig.7 shows
computational results. Fig.7-(a), -(b), and -(c) illustrate the
top, front, and side view of the object, respectively. As
shown in this figure, the object satisfies the given geometric
constraints by twisting partially. This computation took about
1,500 seconds.

Fig.8 shows the second example of L-shaped object de-
formation. The original shape of the object is illustrated in
Fig.8-(a). It is 2 long, 0.2 wide, and it has one rectangular

O

0.7U

x y

z

π/6

Fig. 6. Example 1

(a) Top view

(b) Front view (c) Side view

Fig. 7. Computational result of example 1

bend on its mid point, namely, uh = 0.5U and λ = π/2.
Its flexural rigidity Rf is constantly equal to 1. Positional
and orientational constraints are shown in Fig.8-(b). Fig.9
shows computational results. As shown in this figure, the
object is not also bent but also twisted and its shape becomes
asymmetrical. This computation took about 1,500 seconds.

Thus, our method can estimate bending and torsional
deformation of a rectangular and L-shaped belt object using
only flexural rigidity of the object along its spine line if the
object is isotropic. This flexural rigidity can be measured by
a simple experiment.

V. EXPERIMENTS

In this section, the computation results will be experimen-
tally verified by measuring the deformed shape of a belt
object. We measured the shape of two types of flexible
polystyrol sheets with a 3D scanner. One is a rectangle
200mm long and 20mm wide. The other is L-shaped and
each wing is 200mm long and 20mm wide. Both are 140µm
thick. Their flexural rigidity is unknown but from eq.(24),
it is found that the deformed shape is independent of it

ξ η

ζ

O

0.5U

0.
5U

π/2

ξ η

ζ

O

0.2U

0.
3U

(a) Initial shape (b) Deformed shape

Fig. 8. Example 2
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(a) Top view

(b) Front view (c) Side view

Fig. 9. Computational result of example 2
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Fig. 10. Experimental result of example 1

when it is constant along the spine line. Fig.10 shows the
experimental result of rectangular belt object deformation.
As shown in this figure, the computational result illustrated
in Fig.7 is similar to the actual shape. Next, Fig.11 shows the
measured shape of the L-shaped belt object. Comparing this
shape with the computed shape shown in Fig.9, orientation of
the bend point is different. This difference may be caused by
the assumption that a rib line coincides with the connecting
line at the bend point. So, the validity of this assumption
should be more discussed.

VI. CONCLUSIONS

A fishbone model based on differential geometry to repre-
sent belt object deformation was proposed toward manip-
ulation/assembly of film/flexible circuit boards. First, de-
formation of a rectangular belt object was described using
differential geometry. Next, the fishbone model was proposed
by considering characteristics of a developable surface. In
this model, deformation of a belt object is represented using
the shape of the spine line and the direction of straight
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Fig. 11. Experimental result of example 2

rib lines. Then, we can estimate belt object deformation
if only the flexural rigidity of the object along the spine
line is given. After that, we formulated potential energy
of the object and constraints imposed on it. Moreover, we
applied the fishbone model to a belt object with bends.
Finally, a procedure to compute the deformed shape of the
object was explained and some computational results were
compared with experimental results. They demonstrated that
the fishbone model can represent deformation of a belt object
qualitatively well. Our future works is speeding up of the
computation.
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