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Abstract
A systematic approach to the static analysis of de-

formation of linear objects such as cords and ropes is
presented. There exists many manipulative operations
that deal with deformable objects in environments that
robots are expected to take active parts, while rigid ob-
ject manipulation has been a main interest in most of
the task planning researches. Manipulative operations
that deal with deformable objects is thus a challenging
issue in task planning.

In this article, we will present a static analysis of
the deformation of linear objects. First, the process
of manipulative operations are analyzed. Secondly, a
generalized coordinate system appropriate to describe
the linear object deformation is introduced. Internal
energy of the object and geometric constraints imposed
on it are then formulated. Deformation of the object
is computed by use of nonlinear programming tech-
niques. Finally, experimental results demonstrate the
e�ectiveness of the proposed approach.

1 Introduction
In the past decades, many researchers have been

interested in task planning and many approaches and
methods have been presented. Most of these works
focus on manipulation of rigid objects. Namely, ma-
nipulative operations such as grasping, pick-and-place
operation, assembly, and disassembly of rigid objects
have been taken into consideration. Investigating
manufacturing �elds and viewing our living environ-
ment, however, there are many tasks that deal with
deformable soft objects. For example, many manufac-
turing processes deal with deformable objects such as
rubber tubes, sheet metals, cords, leather products,
and paper sheets. There exist many deformable soft
objects such as clothes and foods in our daily life. Soft
tissues including muscles and skin are manipulated
in medical operations. Robotic machine systems are
expected to take active parts in these environments.
Task planning of deformable object manipulation is
thus an important research issue.

Automatic handling of deformable parts in shoe
and garment manufacturing have been studies by
many researchers [1]. These studies have been done for
individual processes independently and few systematic
approaches have been developed yet. Solid mechanics
has been studied for a long time in order to analyze

deformation of a solid body by investigating the rela-
tionship between stress and strain of the object [2]. It
is not easy to analyze large deformation of a soft ob-
ject such as paper and leather by solid mechanics ap-
proach, which basically deals with small deformation
of a solid body. In computer graphics, some methods
to represent shapes of curved lines and curved surfaces
has been proposed [3]. Shape of cloths [4] and shape
of elastic objects [5] have also been studied. These
studies are not applicable to manipulative operations
of deformable objects directly since they mainly fo-
cus on deformed shapes of objects and manipulation
processes are not formulated there. In task planning
of rigid object manipulation, global kinematics using
contact state representation as well as kinematics and
statics that characterize the unidirectional nature of
mechanical contacts based on polyhedral convex cones
have been proposed [6, 7]. They provide a coherent
perspective to manipulative operations and have been
applied to motion planning, control parameter design,
sensing, and so on. A coherent perspective to deform-
able object manipulation is also required in order to
develop their task planning systematically.

In this article, an analytical approach to the for-
mulation of manipulation processes that deal with
deformable linear objects such as cords and ropes
is presented. First, the process of manipulative op-
erations is described globally with regard to how a
deformable object contacts with other objects around
it. Secondly, a generalized coordinate system is intro-
duced to express the deformation of a linear object.
Next, internal energy of the object and geometric con-
straints imposed on it are formulated. Deformation of
the object can be then computed by applying non-
linear programming techniques. Finally, simple ex-
perimental results are shown to demonstrate how the
deformation is computed by use of the proposed ap-
proach.

2 Global Representation of Deform-

able Object Manipulation
Global representation of manipulation processes is

on key technique to task planning of deformable ob-
ject manipulation. In manipulative operations such
as grasping and part-mating, mechanical contacts be-
tween objects are usually utilized in order to perform
the operation successfully despite positioning errors of
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Figure 1: Example of pickup operation process

the objects. In addition to the mechanical contacts,
deformation of the objects are often utilized in order
to accomplish deformable object manipulation. For
example, bending a thin object such as paper and a
sheet metal is one e�ective strategy to pick up the
object on a at horizontal table. Unexpected defor-
mation of the object sometimes brings on the failure
of manipulative operations. It is thus important to
describe the deformation of the objects and the con-
tacts between them during the manipulation processes
so that we can evaluate the manipulative operations.

Let us consider how the processes of deformable ob-
ject manipulation are represented by taking a simple
operation illustrated in Figure 1. This �gure shows
one operation to pickup a thin object on a at ta-
ble by a hand, which consists of four contact states.
At individual contact states, the geometric constraints
imposed on the object by the table and the �ngertips
di�er topologically one another. Namely, boundary
conditions of the object are di�erent from one another
at individual states. Transitions from one state to an-
other are corresponding to operations that change the
geometric constraints imposed on the object. Tran-
sition from state (a) to state (b), for example, corre-
sponds to the operation of contacting �ngertips to the
object while transition from state (c) to state (d) ex-
presses the operation of releasing the �ngertips form
the object. Individual states represent operations that
cause deformation and motion of the object. State (b)
shown in the �gure, for example, corresponds to the
operation of bending the object while state (d) de-
scribes the operation of moving the object upward by
lifting �ngertips.

From the above discussion, we �nd that the whole
process of deformable object manipulation is described
by a Contact State Graph, where contact states are ex-
pressed by nodes of the graph and state transitions are
given by arcs connecting corresponding nodes. Nodes
of the graph correspond to contacting and releasing
operations while its arcs correspond to deformation
and moving operations. Any manipulative operation

is then given by a series of basic operations corre-
sponding to nodes and arcs of the graph.

3 Formulation of Deformation of Lin-

ear Objects
3.1 Geometric Representation

As mentioned in the previous section, contact state
graphs have a capability of representing the whole ma-
nipulation processes at a topological level. However,
individual operations, especially deformation opera-
tions, must be investigated in detail so that the ma-
nipulative processes can be evaluated in advance. In
this section, we will formulate the deformation of a lin-
ear object in three-dimensional space. We will extend
an approach developed in [8], where one-directional
planar bend deformation under geometric constraints
has been formulated. Here, deformation of a linear
object in three-dimensional space under not only ge-
ometric constraints but also static constraints will be
discussed. The deformations are formulated by the
following steps:

Step 1. Introduce generalized coordinates that can
describe the natural shape and the deformed
shape of the object.

Step 2. Formulate physical quantities of the object.

Step 3. Formulate interactions with other objects
surrounding the linear object.

Let us introduce the generalized coordinate system
expressing the deformation. Let L be the length of
the object and s be the distance from one endpoint
of the object along it. In order to describe the object
shape, we will introduce a coordinate system �xed on
space; O � xyz. Let x(s) = [x(s); y(s); z(s)]T be spa-
tial coordinates corresponding to a point P (s) on the
object. Now, let us focus on the bend deformation
of the object by ignoring its extensional deformation.
Then, the magnitude of the derivative of x(s) with
respect to s must be equal to 1, that is, kdx=dsk = 1,
since the object has no extensional deformation. Para-
metric representations such as B�esier curves or spline
curves, which are commonly used in computer graph-
ics, do not always satisfy the above equation. This
implies that these representations have a capability
of describing the deformed shape alone rather than
the deformation. Namely, in order to describe the ob-
ject deformation, the relationship between the natural
shape and the deformed shape of the object should be
represented.

In order to describe the bend deformation of a linear
object, we will introduce a local object coordinates,
say P � ���, at individual points on the object, as
shown in Figure 2. Select the direction of coordinates
so that the �-axis, �-axis, and �-axis are parallel to x-
axis, y-axis, and z-axis, respectively, in natural state.
Bend deformation of the object is then given by the re-
lationship between the local coordinates at each point
and the global coordinates. Let us describe the orien-
tation of the local coordinate system with respect to
the space coordinate system by use of Eulerian angles,
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Figure 2: Coordinate systems that describe relation-
ship between natural shape and deformed shape

�(s), �(s), and  (s). The rotational transformation
from P � ��� to O�xyz is expressed by the following
rotational matrix:"

C�C�C � S�S C�S�C +C�S �S�C 
�C�C�S � S�C �C�S�S + C�C S�S 

S�C� S�S� C�

#

For the sake of simplicity, cos � and sin � are abbrevi-
ated as C� and S�, respectively. A unit vector along
�-axis at the natural state are transformed into the
following vector due to the object deformation:

�(s)
4

=

"
� sin � cos�
sin � sin�
cos �

#
(1)

Since the above vector coincides to the derivative
dx=ds, the spatial coordinates can be computed by
integrating it. Namely,

x(s) =

Z s

0

�(s)ds+ x0 (2)

where x0 = [x0; y0; z0]
T denotes the spatial coordi-

nates at the endpoint corresponding to s = 0. Note
that this representation satis�es kdx=dsk = 1.

Extensional deformations can be taken into consid-
eration by introducing a strain at each point P (s). Let
" be extensional strain at point P (s) on a linear object
along its central axis. A unit vector along �-axis at the
natural state are transformed into (1 � ")�(s) due to
the object deformations. The spatial coordinates are
computed by integrating (1� ")�(s) instead of �(s) in
eq.(2).

From the above discussion, we �nd that the geo-
metrical shape of a deformed linear object can be rep-
resented by four variables, that is, Eulerian angles �,
�, and  as well as extensional strain ". Note that
each variable depends upon parameter s.

3.2 Formulation of Internal Energy
Variational principles developed in analytical me-

chanics are useful to formulate physical properties of
a linear object using the introduced generalized coor-
dinates [9]. In this article, we will derive a statically
stable shape of the object by applying the variational
principle for statics. Dynamical e�ects during opera-
tions is assumed to be negligible. Let U be the poten-
tial energy of the object and W be the work done by
external forces applied to the object. The variational
principle for statics is given by

�(U �W ) = 0 (3)

where � denotes variational operator. The above equa-
tion implies that the internal energy U � W of the
object reaches to its minimum at its statically stable
shape. In other words, the stable shape can be com-
puted by solving the minimization problem.

Let us �rst formulate the potential energy of a lin-
ear object. Assume that the thickness and the width
of the object is negligibly small. Applying Bernoulli
and Navier's assumption, the potential energy U is
described as follows:

U = Uflex + Utor + Uext + Ugrav (4)

where Uflex, Utor , and Uext represent exural energy,
tortional energy, and extensional energy of the object,
respectively, and Ugrav denotes its gravitational en-
ergy.

Let us describe the curvature of the object and its
tortional angle, which are originated from di�erential
geometry [10], in order to express bend and twist de-
formations. Let � and ! be the curvature and the
tortional angle at point P (s), respectively. The curva-
ture and the tortional angle can be described by use
of Eulerian angles as follows:

�2 =

�
d�

ds

�2
+ sin2 �

�
d�

ds

�2

!2 =

�
d�

ds
cos � +

d 

ds

�2
:

Assume that bending moment and twisting moment
are proportional to curvature and tortional angle at
each point P (s), respectively, over the object. The
exural energy and the tortional energy are then de-
scribed as follows:

Uflex =

Z L

0

1

2
Rf�

2ds

Utor =

Z L

0

1

2
Rt!

2ds

where Rf andRt represent the exural rigidity and the
tortional rigidity at point P (s), respectively. Assum-
ing that extensional force is proportional to external
strain at each point P (s), extensional energy is given
as follows:

Uext =

Z L

0

1

2
Re"

2ds



where Re denotes the extensional rigidity of the ob-
ject. The gravitational energy is given by

Ugrav =

Z L

0

Dx ds

where D represents weight per unit length of the ob-
ject. Note that quantities Rf , Rt, Re, and D may vary
with respect to variable s.

Finally, let us formulate the work done by external
forces. Suppose that an external force F k is applied
to the object at point P (sk). Note that coordinates
corresponding to P (sk) at natural shape are given by
x0(sk) = [0; 0; sk]

T . Thus, the work done by force F k

is described as F T
k fx(sk)�x0(sk)g. Assuming that n

external forces are applied to the object, the resultant
work done by these forces is described as follows:

W =
nX
k=1

F T
k fx(sk)� x0(sk)g (5)

where F 1 through F n are prede�ned forces acting on
the object at point P (s1) through P (sn), respectively.

From the above discussion, we �nd that the exter-
nal energy of the object as well as the work done by
external forces can be described by use of the intro-
duced generalized coordinates.
3.3 Geometrical Constraints

Due to the interaction between a linear object and
other objects such as �ngertips and obstacles, some
geometric constraints are imposed on the object. Let
us derive the geometric constraints imposed on the
object. The relative position between some points on
the object is often controlled during object operations.
Consider a constraint that speci�es the positional re-
lationship between two points on the object. Let
l = [lx; ly; lz ]

T be a predetermined vector describing
the relative position between two operational points,
P (sa) and P (sb). The following equational condition
must be then satis�ed:

x(sb)� x(sa) = l: (6)

The orientation at some points of the object must be
also controlled during the operation. These orienta-
tional constraints are simply described as follows:

�(sc) = �c; �(sc) = �c;  (sc) =  c (7)

where �c, �c, and  c are prede�ned angles at one op-
erational point P (sc).

Contact between a linear object and rigid obsta-
cles in operation space also yields other geometric con-
straints. Note that any points on the object must be
located outside each obstacle or on it. Let us describe
the surface of an obstacle �xed on space by function
h(x) = 0. Assume that value of the function is posi-
tive inside the obstacle and is negative outside it. The
condition that a linear object is not interfered with
this obstacle is then described as follows:

h(x(s)) � 0; 8s 2 [0; L]: (8)

Note that the condition that an object is not inter-
fered with obstacles is described by a set of inequal-
ities, since mechanical contacts between the objects
constrain the object motion unidirectionally.

From the above discussion, we �nd that the geo-
metric constraints imposed on a linear object are given
by not only equational conditions such as eqs.(6) and
(7) but also inequality conditions such as eq.(8). The
deformed shape of the object is, therefore, determined
by minimizing internal energy U�W under these geo-
metric constraints. Namely, computation of object de-
formation results in a variational problem under equa-
tional and inequality conditions.

4 Computation of Deformations
Computation of the deformation of a linear object

results in a variational problem, as mentioned in the
previous section. One method to solve a variational
problem is Euler's approach, which is based on the
stationary condition in function space. Recall that the
geometric constraints resulting from mechanical con-
tacts are unidirectional and are mathematically de-
scribed by inequalities such as eq.(8). These condi-
tions are nonholonomic constraints [11]. Thus, the
shape of an object that minimizes potential energy
does not necessarily satisfy the stationary condition.
This implies that Euler's approach, which is based on
the stationary condition, is not applicable.

In this paper, we will develop a direct method based
on Ritz's method [12] and a nonlinear programming
technique. Let us express functions �(s), �(s),  (s),
and "(s) by linear combinations of basic functions
'1(s) through 'n(s). Substituting the linear com-
binations, internal energy U � W is described by a
function of the coe�cients of the linear combinations.
The geometric constraints are also described by condi-
tions involving the coe�cients. In addition, discretiz-
ing eq.(8) by dividing interval [0; L] intoN small inter-
vals yields a �nite number of conditions. As a result, a
set of the geometric constraints is expressed by equa-
tions and inequalities with respect to the coe�cients.
The deformation of a linear object can be then de-
rived by computing the coe�cients that minimize the
internal energy under the geometric constraints. This
minimization problem under equality and inequality
conditions can be solved by use of a nonlinear pro-
gramming technique such as multiplier method [13].

5 Numerical Example
In this section, one numerical example is shown in

order to demonstrate how the proposed method com-
putes the deformed shape of a linear object. The fol-
lowing set of basic functions are used in the computa-
tion:

'1 = 1; '2 = s;

'2n+1 = sin
2n�s

L
;

'2n+2 = cos
2n�s

L
: (n = 1; 2; 3; 4)

Assume that the length of the object L is equal to 100.
In the nonlinear optimization for the computation of
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Figure 3: Example of computed deformation

deformed shapes, multiplier method and Nelder and
Mead's simplex method are applied.

The example shows the deformed shapes of a linear
object computed by considering its bending and tor-
tion, say, U = Uflex+Utor . Let us reduce a linear ob-
ject of its length L along the central axis of the object.
Suppose that the orientation at one endpoint P (0) is
�xed while the rotation around the central axis of the
object alone is allowed at the other endpoint P (L).
Then, we have the following constraints:

�(0) = �(0) =  (0) = 0;

sin �(L) = 0; cos �(L) = 1:

Assume that dimensionless quantity Rf=Rt, which
characterizes the object shape, is equal to 100. Let us
show the computed shapes corresponding to various
values of the distance between two endpoints; 0:8L,
0:7L, 0:6L, 0:5L, 0:4L, and 0:3L. Computed shapes
of the object are shown in Figure 3. Since the object
shape is not planar for some values of the distance, the
top view, the front view, and the side view are shown
in the �gure. The shape of the object is involved in
x-z plane when the distance is equal to 0:8L or 0:7L.
The object is twisted and is not involved in any plane
when the distance is equal to 0:6L or 0:5L. The object
contains one knot when the distance is equal to 0:4L
or 0:3L. Thus, it turns out that the object shape tran-
sits from a knot free shape into a one-knot shape as
the distance between the endpoints decreases. Recall
that the direction along the central axis of the object
is �xed at both endpoints. This implies that the lin-
ear object must have a non-planar shape during this
transition.

6 Experimental Results
In this section, we will compare the measured de-

formation and the computed deformation in order
to demonstrate the validity of the proposed method.
Note that the proposed method can be applied to the
deformation of thin objects such as paper and sheet
metals around one axis by investigating the cross sec-
tion perpendicular to the axis. Let us measure the
deformation of two sheets of copy paper of 92(�m)
thick shown in Figure 4-(a) and (b), respectively.

Figure 4-(a) shows a rectangle of 200(mm) long and
30(mm) wide. The bend rigidity Rf and the weight
D per unit length of this paper are 104(gw � mm2)
and 2�10�3(gw=mm), respectively. This paper is de-
formed so that the distance l be 180, 140, and 70(mm).
In the computation, we assume that angles �(0) and
�(L) are equal to zero. The di�erence between the
computed values and experimental values along z-axis
is 11(mm) at most. The ratio of the di�erence to the
length of the paper is approximately 6%. The di�er-
ence between the computed shapes and the measure-
ment values results from the discrepancy between the
given values and the actual values of angles �(0) and
�(L). From the measurement values, we estimate that
angles �(0) and �(L) are actually equal to 10� and
0�, respectively. The computed values using the esti-
mated angles are illustrated in Figure 5. The di�er-
ence between the computed values and experimental
values along z-axis is 2(mm) at most. Namely, the
ratio of the di�erence to the paper length is reduced
to 1%.

Figure 4-(b) shows a trapezoid of 200(mm) long
with a left side 50(mm) long and a right side 100(mm)
long. The bend rigidity Rf and the weight D of
this paper can be given by 330b(gw �mm2) and 7b �
10�5(gw=mm), where b denotes the width of the pa-
per. Note that the width b, which is given by 50+s=4,
depends upon variable s. Thus, the bend rigidity and
the weight vary according to variable s. The proposed
method has a capability of computing the deformation
in the case where the bend rigidity or the weight per
unit length varies. Let us reduce this paper so that
the distance l is equal to 160(mm). Without using
estimated values of endpoints, the di�erence between
the computed values and experimental values along z-
axis is 8(mm) at most. The computed values using
the estimated angles are illustrated in Figure 6. Note
that the deformed shape of the object is unsymmet-
ric due to the ununiformity of the bend rigidity and
the weight per unit length. This �gure demonstrates
the proposed method can compute unsymmetric shape
correctly. The di�erence between the computed val-
ues and experimental values along z-axis is 2(mm) at
most. Namely, the ratio of the di�erence to the paper
length is reduced to 1%.

7 Concluding Remarks
An analytical approach to the formulation of de-

formation of a linear object has been developed based
on the physical properties of the object. First, we
showed that the relationship between a natural shape
of a linear object and its deformed shape should be



represented in order to describe the object deforma-
tion. One generalized coordinate system was intro-
duced so that the object deformation can be described
appropriately. Secondly, internal energy and geomet-
ric constraints of the object were formulated using
the introduced coordinates. It turned out that not
only equational constraints resulting from prede�ned
condition on the object motion but inequality con-
strains resulting from unidirectional nature of mechan-
ical contacts are imposed on the object. Next, a pro-
cedure to compute the object deformation has been
developed by applying nonlinear programming tech-
niques. One numerical example and experimental re-
sults have demonstrated the e�ectiveness of the pro-
posed approach.
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