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A systematic approach to the modeling of deformable rodlike objects is presented. Various

rodlike objects such as cords and wires are manipulated in many manufacturing processes.

In such processes, it is important for successful manipulation to evaluate their shapes on a

computer in advance because their shapes can be changed easily and their deformation often

shows hysteresis properties. In this paper, we will develop an analytical method to model the

shape of deformable rodlike objects, and using this method, we will analyze their hysteresis

properties. First, the potential energy of a rodlike object and the geometric constraints

imposed on it are formulated. The shape of the object can be derived by minimizing the

potential energy under the geometric constraints. Secondly, procedure to compute the shape

of a deformed rodlike object is developed by applying a nonlinear programming technique.

Finally, we show some numerical examples and investigate the hysteresis property using our

method.
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1. Introduction
Various deformable objects including cords and

wires are manipulated in many manufacturing pro-
cesses. Deformation of these objects is often utilized
in order to manipulate them successfully while the
manipulation sometimes fails because of unexpected
deformation of them. Modeling of deformable ob-
jects is thus required so that the shape of the ob-
jects can be evaluated on a computer in advance.
Especially, to evaluate the shape of rodlike objects
is important because their shape can be changed eas-
ily by small forces/moments which are imposed on
them. There are many studies about the modeling
and manipulation of rodlike objects such as exible
beams or wires. Zheng et al derived strategies to
insert a exible beam into a hole without wedging
or jamming[1]. We have developed a modeling tech-
nique of rodlike objects such as wires considering
its static deformation[2]. Nakagaki et al have stud-
ied insertion task of a exible wire into hole using
wire model and visual tracking[3]. Wada et al have
been analyzed the deformation of knitted fabrics us-
ing string model[4].

When we manipulate rodlike objects, the his-
tory of the deformation of a rodlike object is im-
portant because their shape depends on it. Namely,
the shape may change according to the sequence of
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operations. This hysteresis property must be inves-
tigated so that the deformation during a series of
operations can be evaluated on a computer.

In this paper, we will develop an analytical
method to model the shape of deformable rodlike
objects such as cords and wires and we will analyze
their hysteresis properties using this method.

First, a geometric representation to describe the
shape of a rodlike object with bending and torsional
deformation is introduced. The potential energy of
the object and the geometric constraints imposed
on it are then formulated. The shape of the ob-
ject in the stable state can be derived by minimiz-
ing the potential energy under the geometric con-
straints. Secondly, procedure to compute the shape
of a deformed rodlike object is developed by apply-
ing a nonlinear programming technique. Thirdly,
numerical examples with the shape transition and
the torsional buckling are shown. Finally, the hys-
teresis property in deformation of a rodlike object is
investigated using our method.

2. Modeling of Rodlike Object Deformation

2.1 Geometric Representation
In this section, we will formulate the geometrical

shape of a rodlike object in three-dimensional space.
Let L be the length of the object along its central
axis and s be the distance from one endpoint of the
object along its central axis. In order to describe the
deformation of a rodlike object, we will introduce
the global space coordinate system and the local ob-
ject coordinate systems at individual points on the
object, as shown in Fig.1. Let O � xyz be the co-
ordinate system �xed on space and P � ��� be the
coordinate system �xed on an arbitrary point P (s)
of the object. Select the direction of the local coor-
dinate system P � ��� so that �-axis is aligned with
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Fig. 1 Coordinates systems describing object defor-
mation

the central axis of the object. Let us describe the
orientation of the local coordinate system with re-
spect to the space coordinate system by use of Eule-
rian angles, �(s), �(s), and  (s). In order to express
bending and torsional deformation of the object, let
us describe the curvature of the object and its tor-
sional ratio. The curvature � and the torsional ratio
! can be described by use of Eulerian angles �, �,
and  as follows:
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Let x(s) = [ x(s); y(s); z(s) ]T be spatial co-
ordinates corresponding to point P (s). The spatial
coordinates can be computed as follows:

x(s) = x0 +
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where x0 = [ x0; y0; z0 ]T denotes spatial coordi-
nates at the end point corresponding to s = 0.

From the above discussion, we �nd that the ge-
ometrical shape of a deformed rodlike object can be
represented by three variables, that is, Eulerian an-
gles �, �, and  . Note that each variable depends
upon parameter s.

2.2 Formulation of Potential Energy and Con-
straints
Let us formulate the potential energy of a rodlike

object. Applying Bernoulli and Navier's assump-
tion, it turns out that the potential energy U is de-
scribed as follows:
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where Rf , Rt, and D represent the exural rigidity,
the torsional rigidity, and the weight per unit length
at point P (s), respectively. Note that Rf , Rt, and
D may vary with respect to variable s.

Next, let us represent the geometric constraints
imposed on the object. Consider a constraint that
speci�es the positional relationship between two
points on the object. Let l = [ lx; ly; lz ]T be a
predetermined vector describing the relative position
between two operational points, P (sa) and P (sb).
Recall that the spatial coordinates corresponding to
parameter s is given by eq.(2). Thus, the following
equational condition must be satis�ed:

x(sb)� x(sa) = l (4)

The orientation at some points of the object must be
also controlled during the operation. These orienta-
tional constraints are simply described as follows:

�(sc) = �c
�(sc) = �c (5)

 (sc) =  c

where �c, �c, and  c are prede�ned angles at one
operational point P (sc).

Note that any points on a rodlike object must be
located outside each obstacle or on it when the con-
tact between the object and rigid obstacles yields.
Let us describe the surface of an obstacle �xed on
space by function h(x; y; z) = 0. Assume that value
of the function is positive inside the obstacle and
is negative outside it. The condition that a rodlike
object is not interfered with this obstacle is then de-
scribed as follows:

h(x(s)) � 0; 8s 2 [0; L] (6)

where x(s) is described in eq.(2). Note that condi-
tion that an object is not interfered with obstacles is
described by a set of inequalities, since mechanical
contacts between the objects constraints the object
motion unidirectionally.

Especially, in order to avoid the interference
with itself, a rodlike object must be satis�ed the
following conditions.

jx(si)� x(sj)j � 2r;

8si; sj 2 [0; L]; s:t: jsi � sjj � 2r
(7)

where r represents the radius of a rodlike object.
From the above discussion, the shape of a rodlike

object is determined by minimizing potential energy
described in eq.(3) under the geometric constraints
represented by eqs.(4), (5), (6), and (7). Namely,
computation of the shape of a deformed object re-
sults in a variational problem under equational and
inequality conditions.

3. Procedure to Compute Shape of Rodlike
Object
Computation of the shape of a rodlike object

results in a variational problem as mentioned in the
previous section.

In this paper, we will develop a direct method
based on Ritz's method [5] and a nonlinear program-
ming technique because the variational problem in
this case includes inequality conditions.

Let us express functions �(s), �(s), and  (s) by
linear combinations of basic functions e1(s) through
en(s): "
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where a�, a�, and a are vectors consisting of co-
e�cients corresponding to functions �(s), �(s), and
 (s), respectively, and vector e(s) is composed of ba-
sic functions e1(s) through en(s). Let us describe the
whole coe�cient vector a = [ a�T; a�

T; a 
T ]T.

Substituting eq.(8) into eq.(3), potential energy U is
described by a function of coe�cient vector; a. The
geometric constraints are also described by condi-
tions involving the coe�cient vector. As a result, a
set of the geometric constraints is expressed by equa-
tions and inequalities with respect to the coe�cient
vectors.

The shape of a deformed rodlike object can be
then derived by computing coe�cient vector a that
minimizes the potential energy under the geomet-
ric constraints. This minimization problem under
equality and inequality conditions can be solved by
use of a nonlinear programming technique such as
multiplier method [6]. The shape of the object cor-
responding to the coe�cient vector can be computed
by use of eq.(2).

4. Numerical Examples

In this section, we will show some numerical ex-
amples using our proposed approach. The following
set of basic functions e1(s) through e10(s) are used
in the computation of these examples:

e1(s) = 1; e2(s) = s;

e2n+1(s) = sin
n�s

L
;

e2n+2(s) = cos
n�s

L
: (n = 1; 2; 3;4)

The �rst example shows computed shapes of a rod-
like object when it is bent. The second example
shows those when it is twisted.

4.1 Bending Deformation

The �rst example shows the topological shape
transition of a rodlike object through its bending
deformation. Let us align the central axis at both
endpoints of a rodlike object in the initial state. We
make one endpoint move along this axis in order to
shorten the distance between both endpoints. Com-
puted shapes of the object are shown in Fig.2. The
shape of the object has one knot as the distance be-
tween the endpoints decreases. In this state, the ob-
ject has not only bending deformation but also has
torsional deformation because the potential energy
in this state is smaller than that when the object
has only bending deformation. Using our proposed
approach, we can simulate this shape transition.

4.2 Torsional Deformation

The second example shows computational re-
sults of a rodlike object in torsional deformation.
Let us �x one endpoint of a rodlike object and ro-
tate the other around the central axis. Fig.3 shows
computational results. The object becomes curved
as the torsional angle becomes larger because the
potential energy when the object bends is smaller
than that when it keeps itself straight. Thus, we
can also simulate this torsional buckling by use of
our proposed approach.

Fig. 2 Computational results in bending deforma-
tion

Fig. 3 Computational results in torsional deforma-
tion

5. Hysteresis Property of Rodlike Object

In this section, we will investigate the hysteresis
property of rodlike object deformation.

We experiment with a metal wire, whose exu-
ral and torsional rigidity are 6.6�10�4[N�m2] and
2.3�10�4[N�m2] respectively, in order to examine
that the shape of a rodlike object can depend on
the history of manipulative operation. Fig.4 illus-
trates the devices for this experiment. Two robot
hands can control the position and the orientation
of both endpoints of a wire. In the initial state,
one endpoint is rotated by !0[rad] with keeping the
wire straight. The distance between two endpoints is
then decreased by controlling the two robot hands.
We measure the shape of the deformed wire with
two cameras. Next, the distance is increased and
the shape of the deformed wire is measured.

camera1

camera2

wire

Fig. 4 Sketch of devices for experiment



(a) shortening the distance (b) lengthening the distance

Fig. 5 Experimental results with hysteresis in deformation ( !0 = 2:25� )

Fig.5 shows experimental results with hystere-
sis property. The initial torsional angle !0 is equal
to 2.25�. When !0 is less than 2�, this hysteresis
property does not appear. Let us consider this phe-
nomenon.

The shape when a rodlike object is twisted 2� is
equivalent topologically to that when it is bent 2�
as shown in Fig.6. When the shape of the twisted
object transits to that of the bent it, the torsional de-
formation changes to the bending deformation. Be-
cause of this shape transition, the potential energy
of the object can become smaller than that without
the transition. Let us calculate the potential energy
of a rodlike object when it is only twisted 2.25� and
that when it is twisted 0.25� and is bent 2�. As-
sume that Rt=Rf is equal to the measured value in
above experiment, 0.35. Fig.7 shows the computa-
tional result. The transverse axis denotes the dis-
tance between the endpoints along z-axis relative to
the object length L, that is, lz=L. As the distance
between the endpoints is decreased, the potential en-
ergy of the object when it is both twisted and bent
becomes smaller than that when it is only twisted.
Therefore, it seems that the hysteresis property as
shown in Fig.5 appears when the potential energy
of the object becomes larger than the barrier that
divides the type of deformation into two cases as
shown in Fig.6. It is di�cult to predict when this
shape transition occurs but it is important to con-
trol it for manipulation of a rodlike object without

Fig. 6 Two types of shape in deformation

considering the history of the deformation.

6. Conclusion
In this paper, we developed an analytical

method to model the shape of deformable rodlike
objects and we analyzed their hysteresis properties
using our method. First, a geometric representation
to describe the shape of a rodlike object was intro-
duced. The potential energy of the object and the
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geometric constraints imposed on it were formulated
using Eulerian angles. The shape of the object in the
stable state can be derived by minimizing the po-
tential energy under the geometric constraints. Sec-
ondly, procedure to compute the shape of a deformed
rodlike object was developed by applying a nonlinear
programming technique. Thirdly, numerical exam-
ples were shown. we can simulate the shape transi-
tion and the torsional buckling. Finally, we investi-
gated the hysteresis property in manipulative opera-
tions of rodlike objects using our proposed approach.
It is expected that this approach enables us to plan
manipulative operations of rodlike objects without
hysteresis properties or to utilize such properties for
their manipulation.
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