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ABSTRACT
     A dynamic motion analysis of deformable linear objects is presented. In manufacturing,
evaluation of the shape of deformable objects is important for planning of their manipulation.
Especially, if deformable objects are operated quickly, the dynamical effect of them cannot be
neglected when we evaluate their shapes. In this paper, we analyse dynamic deformation of
deformable linear objects. Firstly, a geometric representation of the shape of a linear object is
introduced and its potential energy and kinetic energy are formulated. Then, its equations of motion
can be derived based on Hamilton's principle. Secondly, a procedure to compute the shape is
developed. By using it, an numerical example is presented. Thirdly, the validity of our method is
demonstrated with a measuring experiment. Finally, it is shown that our method can be applied to
manipulation planning utilizing dynamic deformation of a linear object.

1. INTRODUCTION
     In manufacturing, automation of handling
and manipulative processes which deal with
deformable objects such as wires, cords, rubber
tubes, and so on has been done but it is not
enough to satisfy our requests. In manipulative
processes, if the shape of deformed objects can
be predicted, we can operate them successfully
by utilizing their deformation. Modeling of
deformable objects is thus necessary in order to
evaluate their shape on a computer in advance.
Especially, modeling of dynamic deformation
becomes important because the dynamical effect
of them cannot be neglected if they are operated
quickly by humans or machines. Furthermore, by
considering dynamic deformation, we can derive
new task strategies which cannot be obtained
when only static deformation is considered. For
example, when we manipulate a linear object slowly as shown in Figure 1-(a), it will collide against
an obstacle. But, quick manipulation can avoid collision as shown in Figure 1-(b) even if a
manipulator tracks the same trajectory. Therefore, it is important for quick manipulation of
deformable objects to evaluate the shape of them which deform dynamically in advance.
     In this paper, we will analyse dynamic deformation of deformable linear objects. First, the
geometric shape of a linear object is formulated by using Eulerian angles. Its potential energy and
kinetic energy are also formulated. Then, equations of motion can be derived from the formulation
by applying Hamilton's principle and Euler's approach. Secondly, a procedure to compute its shape
is proposed and a computational result is shown. Thirdly, the validity of our proposed method is
demonstrated by comparing the computed shape with the actual shape measured by a high-speed
camera. Finally, we try applying our method to manipulation planning utilizing dynamic
deformation of a linear object.

(a) Slow
manipulation

(b) Quick
manipulation

Figure 1  Example of manipulation utilizing
dynamic deformation of linear object



2. MODELING OF LINEAR OBJECT DEFORMATION
2.1 Geometric Representation of Deformed Linear Objects
     In this section, we will formulate the geometrical shape of a linear object, which moves and
deforms dynamically in 3-dimensional space. Let L be the length of the object, s be the distance
from one endpoint of the object along it, and t be the time. Let us introduce the global space
coordinate system and the local object coordinate systems at individual points on the object and at
each time, as shown in Figure 2, in order to describe motion and deformation of a linear object. Let
O-xyz be the coordinate system fixed on space and P(s, t)-ξηζ  be the coordinate system fixed on an
arbitrary point of the object at distance s and time t. Select the direction of the local coordinate
system P(s, t)-ξηζ  so that ζ -axis is aligned with the central axis of the object. Then, motion and
deformation of the object are represented by the relationship between the local coordinate system
P(s,t)-ξηζ  and the global coordinate system O-xyz. Let us describe the orientation of the local
coordinate system with respect to the space coordinate system by use of Eulerian angles, φ(s,t),
θ(s,t), and ψ (s,t).
     Let x = [ x(s,t)  y(s,t)  z(s,t) ]T be spatial coordinates corresponding to point P(s,t) . Then, it
can be described by using Eulerian angles Θ  = [ φ(s,t)  θ(s,t)  ψ (s,t) ]T as follows:
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where x0 denotes the coordinate at the end point corresponding to s=0, which is represented as a
function of time t and ζ  is the unit vector along ζ -axis.
     Let us describe the curvature of the object and its torsional ratio at time t in order to express
bending and torsional deformation of the object. Let κ(s,t) and χ(s,t) be the curvature and the
torsional ratio at point P(s,t), respectively. They can be described by use of Eulerian angles φ, θ, and
ψ  as follows:
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     Next, let us describe the velocity and the angular velocity of the object at time t, in order to
express motion of the object. Let v be velocities of the object at the point P(s,t), namely, t∂∂= xv .
Furthermore, let ω1(s,t) and ω2(s,t) be the angular velocity for deformation around the axis which
intersects with the central axis perpendicularly, and that around the central axis at point P(s,t),
respectively as shown in Figure 3. It is found that these two angular velocities can be described by
use of Eulerian angles φ, θ, and ψ  as follows:
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     From the above discussion, the geometric shape of a moving and deforming linear object can
be represented by three variables, φ, θ, and ψ , which depend upon distance s and time t.

2.2 Potential Energy, Kinetic Energy, and Geometric Constraints
     In this paper, we will adopt Hamilton's principle that the time integral of the difference
between kinetic energy of a object and its potential energy reaches to the minimum when the object
moves dynamically. In this section, we will formulate potential energy and kinetic energy of a linear
object and geometric constraints imposed on it.
     First, let us formulate potential energy of a linear object by considering its bending and
torsional deformation. Applying Bernoulli and Navier's assumption, we can describe the potential
energy U at time t as follows:
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Figure 2  Motion and deformation of linear object

Figure 3  Angular velocities of linear object
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where Rf and Rt represent flexural rigidity and torsional rigidity at point P(s,t), respectively.
     Next, let us formulate kinetic energy of a linear object. Considering translation and rotation of
the object, kinetic energy T at time t is described as follows:
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where ρ, I1, and I2 represent linear density, moment of inertia around the axis which intersects with
the central axis of the object perpendicularly, and that around the central axis of it, respectively.
     By applying Hamilton's principle, the following functional should reach to its minimum at
actual motion and deformation:
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     Some geometric constraints are imposed on a linear object because it may interact with other
objects such as fingertips and obstacles. Such constraints can be represented as equational
conditions with respect to φ, θ, and ψ . Then, they can be taken into the optimization problem shown
in eq.(6) as follows:
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where λi and gi represent Lagrange undetermined multiplier functions and equational conditions,
respectively.
     From the above discussion, the shape of a linear object is determined by minimizing the
difference between kinetic energy described in eq.(5) and potential energy described in eq.(4) under
geometric constraints. Namely, computation of the shape of a linear object results in a variational
problem under several conditions.

3. PROCEDURE TO COMPUTE LINEAR OBJECT SHAPE
     In the previous section, we found that the computation of the shape of a linear object results
in a variational problem. We will establish a procedure to compute the shape of a linear object.
Differential equations can be derived by applying Euler's approach, which is one method to solve a
variational problem. The following equations of motion are derived by applying Euler's approach to
eq.(7):
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Eq.(8) is equivalent to the following equation:
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     Let us express Eulerian angles and their first and second partial derivatives by linear
combinations of basic functions e1(s) through en(s) as follows:
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where A, B, and C are n×3  coefficient matrix, and e(s) represents a vector consisting of basic
functions [ e1(s)  e2(s)  ...  en(s) ]T. Then, eq.(9) can be represented as follows:

( ) 0=C,B,AF , subject to [ ]21 t,tt ∈∀ . (11)
Therefore, if matrices A and B which correspond angles and angular velocities at time t1 are given,
we can calculate matrix C, that is, angular accelerations. Furthermore, by using it, angles and
angular velocities at time t1+∆t can be approximated. By repeating this procedure, we can derive the
shape of a linear object.

4. COMPUTATION OF LINEAR OBJECT SHAPE AND MEASURING EXPERIMENT
     In this section, we show a numerical example by using a proposed procedure in the previous
section and demonstrate its validity with a measuring experiment.
     The following set of basic functions are used in the computation of this example:
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The number of basic functions should be determined with considering both precision in
approximation and computing time.
     Figure 4 shows an example of computational result. In this example, it is assumed that length,
radius, linear density, flexural rigidity, and torsional rigidity of a linear object are 1.0[m], 1.0×10-3

[m], 1.0×10-3 [kg/m], 1.0×10-2 [Nm2], and 1.0×10-1 [Nm2], respectively. Both endpoints of the object
are fixed in the initial state as shown in Figure 4-(a). Geometric constraints are represented as
follows:
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The initial shape of the object can be derived by minimizing potential energy consisting of flexural
and torsional energy under constraints given by eq.(13). In detail, see [1]. Figure 4-(b) and (c)
illustrates the object shape after its right endpoint is released. Thus, we can computed the shape of a
linear object deforming dynamically by using our proposed procedure.
     Next, we measure the actual shape of a linear object. A rectangular PET shirt, which is
2.0×10-1 [m] long, 1.0×10-2[m] wide, and 1.9×10-4[m] thick, is used as a linear object. Its flexural
rigidity is 2.4×10-5[Nm2] and its linear density is 2.8×10-3[kg/m]. In this measuring experiment, the
left endpoint of a linear object is fixed on a manipulator and its right endpoint is free. We measure
its shape with a high-speed camera rotating its left endpoint at two kinds of angular acceleration so
that its central axis is involved in a horizontal plane through deformation. Computational values and
measurement values of the object are plotted in Figure 5. Solid and dotted lines represent computed
shapes and measured shapes, respectively. In Figure 5-(a), the left endpoint of the object is rotated
at the angular acceleration of 0.4[rad/s2] and its shapes are illustrated every 320[ms]. In Figure 5-(b),
the angular acceleration at P(0,t) is 30[rad/s2] and results are shown every 80[ms]. The object hardly
deforms and computed shapes correspond to measured shapes in Figure 5-(a). In Figure 5-(b), The
difference between computed shapes and measured shapes becomes larger as the angular velocity



increases. It seems this difference results from air resistance. It is not considered in our formulation,
however, it can not be negligible in this experiment because the width of the PET shirt is not
sufficiently small. Therefore, it is expected that we can predict dynamic deformation of a linear
object by using our proposed method when its moving velocity is not so high and/or it is very fine.

5. APPLICATION TO MANIPULATION PLANNING
     In this section, we try applying our proposed method to manipulation planning utilizing
dynamic deformation.
     Figure 6 shows an example of avoidance of a spheral obstacle by dynamic deformation. In
Figure 6-(a), the left endpoint of a linear object is rotated slowly. Then, it interferes with the
obstacle, namely, it collides against the obstacle. In Figure 6-(b), the object is brandished quickly
and it can deform without collision against the obstacle. Figure 7 shows trajectories of the right
endpoint of a linear object, whose length is 0.2[m] and whose linear density is 3.0×10-3[kg/m], in
the following four cases:

l case1 : Rf = 2.0×10-5[Nm2], ( ) ][rad/s300 222 =∂θ∂ t,t ,
l case2 : Rf = 0.4×10-5[Nm2], ( ) ][rad/s300 222 =∂θ∂ t,t ,
l case3 : Rf = 0.1×10-5[Nm2], ( ) ][rad/s300 222 =∂θ∂ t,t ,
l case4 : Rf = 0.4×10-5[Nm2], ( ) ][rad/s400 222 .t,t =∂θ∂ .

As shown in this figure, the right endpoint passes more inside of a circular orbit as its flexural
rigidity decreases or as the angular acceleration increases. By computing this trajectory, we can

(a) Initial state              (b) 0.10[s] after             (c) 0.20[s] after

Figure 4  Computed shapes of linear object deforming dynamically

Figure 5  Comparison between computed values and measured values
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estimate the size of an obstacle which
the object can avoid collision against.
Therefore, we can determine the
angular acceleration of the left
endpoint of the object considering the
size of the obstacle to avoid. This
example is very simple but it seems
that we can plan manipulation linear
objects utilizing their dynamic
deformation by using our proposed
method.

6. CONCLUSIONS
     In this paper, we analyzed
dynamic deformation of linear objects.
Firstly, a geometric representation of a
linear object deforming dynamically was established. It is found that motion and deformation of a
linear object can be described by Eulerian angles. Furthermore, its potential energy, its kinetic
energy, and geometric constraints imposed on it were formulated by using Eulerian angles. The
object shape can be derived by minimizing the time integral of the difference between kinetic
energy and potential energy under geometric constraints. Secondly, a procedure to compute the
shape was developed and a computational result was shown in order to demonstrate the
effectiveness of our proposed procedure. Thirdly, it was verified that our proposed method is
appropriate to a dynamic deformation modeling of a linear object by a measuring experiment.
Finally, manipulation utilizing dynamic deformation of a linear object can be planed by applying
this dynamic analysis of the object. It is expected that our approach will be useful for derivation of
task strategies in linear object manipulation.
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(a) Slow manipulation

(b) Quick manipulation
Figure 6  Simulation of manipulation utilizing dynamic deformation
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Figure 7  Trajectories of object right endpoint


